Applied Physics B

, Volume 104, Issue 2, pp 427–438 | Cite as

Constraints of two-colour TiRe-LII at elevated pressures

Article

Abstract

The main objective of this work is to investigate the influence of high-pressure conditions on the determination of primary particle size distributions of laser-heated soot particles using pyrometrically determined temperature decays. The method is based on time-resolved laser-induced incandescence measurements carried out at two different wavelengths (two-colour TiRe-LII). The LII signals are transferred into a particle ensemble averaged (effective) temperature using Planck’s thermal radiation formula. Assuming that all particles within the size distribution possess a unique temperature at the end of the laser pulse, the size distribution can be determined by numerically simulating the measured temperature decay. From our investigations, for pressures up to a few bars it is obvious that this strategy can be successfully applied if standard laser pulses of nano-second duration are used as an LII-excitation source. At higher pressures the time scales of heat conduction are decreased to such an extent that a unique temperature for all particles within the ensemble cannot be assumed at the end of the nano-second laser pulse. However, further investigations show that the presented two-colour TiRe-LII technique can be successfully adopted under technical high-pressure conditions as well, if the pulse duration of the TiRe-LII-excitation source is reduced into the pico-second range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203 (1983) CrossRefGoogle Scholar
  2. 2.
    C.J. Dasch, Appl. Opt. 23, 2209 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    L.A. Melton, Appl. Opt. 23, 2201 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    Ö.L. Gülder, Combust. Flame 88, 74 (1992) CrossRefGoogle Scholar
  5. 5.
    D.L. Hofeldt, SAE Tech. Paper Ser. No. 930079 (1993), p. 45 Google Scholar
  6. 6.
    N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993) Google Scholar
  7. 7.
    B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994) CrossRefGoogle Scholar
  8. 8.
    R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996) CrossRefGoogle Scholar
  12. 12.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, in Proc. Congr. Advanced Non-Intrusive Instrumentation for Propulsion Engines (AGARD, Neuilly, 1997) Google Scholar
  14. 14.
    A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999) CrossRefGoogle Scholar
  15. 15.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001) CrossRefGoogle Scholar
  16. 16.
    T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002) CrossRefGoogle Scholar
  17. 17.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    C. Shoemaker-Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    H.A. Michelson, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003) CrossRefGoogle Scholar
  22. 22.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  23. 23.
    B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974) CrossRefGoogle Scholar
  24. 24.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    F. Liu, D.R. Snelling, G.J. Smallwood, in Proc. IMECE2005, ASME Int. Mechanical Engineering Congr. Expos., 5–11 November 2005, Orlando, FL, USA (2005), pp. 355–364 Google Scholar
  27. 27.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    S.-A. Kuhlmann, J. Reimann, S. Will, Chem. Ing. Tech. 81, 803 (2009) CrossRefGoogle Scholar
  29. 29.
    R.J. Thorn, G.H. Winslow, J. Chem. Phys. 26, 186 (1957) ADSCrossRefGoogle Scholar
  30. 30.
    K. Schäfer, E. Lax (eds.), Landolt-Börnstein, II2a, 6th edn. (Springer, Berlin, 1960), pp. 1–30 Google Scholar
  31. 31.
    T.P. Jenkins, R.K. Hanson, Combust. Flame 126, 1669 (2001) CrossRefGoogle Scholar
  32. 32.
    W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 161 (1969) CrossRefGoogle Scholar
  33. 33.
    S.C. Lee, C.L. Tien, Proc. Combust. Inst. 18, 1159 (1981) Google Scholar
  34. 34.
    B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993) CrossRefGoogle Scholar
  35. 35.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973) CrossRefGoogle Scholar
  36. 36.
    B.F. Kock, Th. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002) CrossRefGoogle Scholar
  37. 37.
    M. Hofmann, W.G. Bessler, Ch. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156, 120 (2009) CrossRefGoogle Scholar
  42. 42.
    H. Michelsen, Appl. Phys. B 83, 443 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Engler-Bunte-Institut, Bereich VerbrennungstechnikKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Institut für Technische Chemie und PolymerchemieKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations