Applied Physics B

, Volume 104, Issue 2, pp 285–295 | Cite as

Size dependence of complex refractive index function of growing nanoparticles

  • A. Eremin
  • E. Gurentsov
  • E. Popova
  • K. Priemchenko
Article

Abstract

The evidence of the change of the complex refractive index function E(m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr–F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E(m) variation. Small carbon particles of about 1–14 nm in diameter had a low value of E(m)∼0.05–0.07, which tends to increase up to a value of 0.2–0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E(m) rise from ∼0.1 for particles 1–3 nm in diameter up to ∼0.2 for particles >12 nm in diameter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485 (1998) CrossRefGoogle Scholar
  5. 5.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    B.S. Haynes, H.Gg. Wagner, Prog. Energy Combust. Sci. 7, 229 (1981) CrossRefGoogle Scholar
  7. 7.
    S.C. Hendy, Nanotechnology 18, 1 (2007) CrossRefGoogle Scholar
  8. 8.
    F. Ding, K. Bolton, A. Rosen, J. Vac. Sci. Technol. A 22, 1471 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    F. Ding, K. Bolton, A. Rosen, Phys. Rev. B 70, 075416-1 (2004) ADSGoogle Scholar
  10. 10.
    V.N. Lihachev, T.Yu. Astahova, G.A. Vinogradov, M.I. Aliymov, Russ. J. Phys. Chem. B 26, 89 (2007) Google Scholar
  11. 11.
    Ch. Schulz, B. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    P. Minutolo, G. Gambi, A. D’Alessio, Proc. Combust. Inst. 27, 1461 (1998) Google Scholar
  13. 13.
    A. Emelianov, A. Eremin, H. Jander, H.Gg. Wagner, Ch. Borchers, Proc. Combust. Inst. 29, 2351 (2002) CrossRefGoogle Scholar
  14. 14.
    G. Basile, A. Rolando, A. D’Alessio, A. D’Anna, P. Minutolo, Proc. Combust. Inst. 29, 2391 (2002) CrossRefGoogle Scholar
  15. 15.
    A. D’Anna, A. Rolando, C. Allouis, P. Minutolo, A. D’Alessio, Proc. Combust. Inst. 30, 1449 (2005) CrossRefGoogle Scholar
  16. 16.
    H. Wang, Proc. Combust. Inst. 33, 41 (2011) CrossRefGoogle Scholar
  17. 17.
    H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011) CrossRefGoogle Scholar
  18. 18.
    R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    D. Woiki, A. Giesen, P. Roth, Proc. Combust. Inst. 28, 2531 (2000) CrossRefGoogle Scholar
  20. 20.
    R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Ziborov, Combust. Flame 132, 77 (2003) CrossRefGoogle Scholar
  21. 21.
    A.V. Eremin, E.V. Gurentsov, M. Hofmann, B. Kock, Ch. Schulz, Appl. Phys. B 83, 449 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Eremin, E.V. Gurentsov, B. Kock, Ch. Schulz, J. Phys. D, Appl. Phys. 41, 055203 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    D. Snelling, F. Liu, G. Smallwood, Ö. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  24. 24.
    M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud, J. Phys. Chem. Ref. Data 14 (1985) Google Scholar
  25. 25.
    J.B. Austin, R.H.H. Pierce, Phys., J. Gen. Appl. Phys. 4, 409 (1933) ADSGoogle Scholar
  26. 26.
    W.W. Anderson, T.J. Ahrens, J. Geophys. Res. 99, 4273 (1994) ADSCrossRefGoogle Scholar
  27. 27.
    B. Kock, C. Kayan, J. Knipping, H.R. Ortner, P. Roth, Proc. Combust. Inst. 30, 1689 (2004) CrossRefGoogle Scholar
  28. 28.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    H.A. Michelsen, F. Liu, B. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaim Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, Trans. ASME 123, 814 (2001) CrossRefGoogle Scholar
  31. 31.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973) CrossRefGoogle Scholar
  32. 32.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996) CrossRefGoogle Scholar
  33. 33.
    A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999) CrossRefGoogle Scholar
  34. 34.
    A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, A. Violi, Proc. Combust. Inst. 28, 2547 (2000) CrossRefGoogle Scholar
  35. 35.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    Q. Jiang, Z.P. Chen, Carbon 44, 79 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Eremin
    • 1
  • E. Gurentsov
    • 1
  • E. Popova
    • 1
  • K. Priemchenko
    • 1
  1. 1.Joint Institute for High TemperatureMoscowRussia

Personalised recommendations