Applied Physics B

, Volume 103, Issue 1, pp 189–194 | Cite as

Parameter-dependent optical nutation in PbSe/CdSe/ZnS quantum-dot

Article

Abstract

The eigenenergies and eigenfunctions of the spherical PbSe/CdSe/ZnS quantum-dot with the core-shell-shell structure and the electric dipole moment between the a 1s state (the lowest state of the system) and b 1p state (the lowest p state above the first potential) have been calculated by using the rotational wave approximation and the effective mass approximation. The optical nutation signal induced by the transition between these two energy levels has been calculated based on the optical Bloch equations. In particular, the influence of the core’s radius increasing and the CdSe shell’s thickness increasing has been investigated respectively. It is shown from the numerical calculation results that the optical nutation signals are dependent on the size and the structure of the quantum-dot. Moreover, the quantum size-dependent Rabi frequency has been analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Achermann, M.A. Petruska, V.I. Klimov, D.D. Koleske, M.H. Crawford, Nano Lett. 6, 1396 (2006) CrossRefADSGoogle Scholar
  2. 2.
    V.I. Klimov, M.G. Bawendi, Mater. Res. Soc. Bull. 26, 998 (2001) Google Scholar
  3. 3.
    R.C. Somers, M.G. Bawendi, D.G. Nocera, Chem. Soc. Rev. 36, 579 (2007) CrossRefGoogle Scholar
  4. 4.
    I.L. Medintz, H.U. Tetsuo, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005) CrossRefADSGoogle Scholar
  5. 5.
    D.J. Mowbray, M.S. Skolnick, J. Phys. D 38, 2059 (2005) CrossRefADSGoogle Scholar
  6. 6.
    Vas.P. Kunets, T.Al. Morgan, Yu.I. Mazur, V.G. Dorogan, P.M. Lytvyn, M.E. Ware, D. Guzun, J.L. Shultz, G.J. Salamo, J. Appl. Phys. 104, 103709 (2008) CrossRefADSGoogle Scholar
  7. 7.
    S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004) CrossRefADSGoogle Scholar
  8. 8.
    R. Dalven, Phys. Rev. B 3, 1953 (1971) CrossRefADSGoogle Scholar
  9. 9.
    A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen, S. Kycia, Appl. Phys. Lett. 71, 3406 (1997) CrossRefADSGoogle Scholar
  10. 10.
    G.E. Tudury, M.V. Marquezini, L.G. Ferreira, L.C. Barbosa, C.L. Cesar, Phys. Rev. B 62, 7357 (2000) CrossRefADSGoogle Scholar
  11. 11.
    P.J. McCann, K. Namjou, X.M. Fang, Appl. Phys. Lett. 75, 3608 (1999) CrossRefADSGoogle Scholar
  12. 12.
    H. Preier, Appl. Phys. 20, 189 (1979) CrossRefADSGoogle Scholar
  13. 13.
    S. Kapoor, J. Kumar, P.K. Sen, J. Appl. Phys. 95, 4833 (2004) CrossRefADSGoogle Scholar
  14. 14.
    P.K. Sen, M.K. Bafna, S.K. Gupta, J. Appl. Phys. 96, 5552 (2004) CrossRefADSGoogle Scholar
  15. 15.
    S.H. Gong, D.Z. Yao, J. Phys., Condens. Matter 18, 10989 (2006) CrossRefADSGoogle Scholar
  16. 16.
    J.M. Pietryga, D.J. Werder, D.J. Williams, J.L. Casson, R.D. Schaller, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 4879 (2008) CrossRefGoogle Scholar
  17. 17.
    J.O. Dimmock, R.G. Wheeler, J. Appl. Phys. 32, 2271 (1961) CrossRefADSGoogle Scholar
  18. 18.
    R.G. Wheeler, J.O. Dimmock, Phys. Rev. 125, 1805 (1962) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    J.C. Miklosz, R.G. Wheeler, Phys. Rev. 153, 913 (1967) CrossRefADSGoogle Scholar
  20. 20.
    G. Wang, K. Guo, J. Phys., Condens. Matter 13, 8197 (2001) CrossRefADSGoogle Scholar
  21. 21.
    U. Woggon, F. Gindele, W. Langbein, Phys. Rev. B 61, 1935 (2000) CrossRefADSGoogle Scholar
  22. 22.
    M. Lindberg, S.W. Koch, Phys. Rev. B 38, 3342 (1988) CrossRefADSGoogle Scholar
  23. 23.
    D. Schooss, A. Mews, A. Eychmüller, H. Weller, Phys. Rev. B 49, 17072 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of PhysicsWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Acoustic and Photonics Material and Devices, Ministry of EducationWuhan UniversityWuhanChina

Personalised recommendations