Applied Physics B

, Volume 104, Issue 2, pp 367–383 | Cite as

Photoionization mass spectrometry for the investigation of combustion generated nascent nanoparticles and their relation to laser induced incandescence

Article

Abstract

Premixed laminar flat ethylene flames were investigated for nascent nanoparticles through photoionization mass spectrometry (PIMS). Using an atmospheric McKenna burner and ethylene air flames coupled to an atmospheric sampling system, within a relatively narrow C/O range two modes of these particles were found, which can be clearly distinguished with regard to their temperature dependence, their reactivity, and their ionization behaviour. Behind a diesel engine the same particles were observed.

These results were corroborated using a low pressure ethylene–O2 flame coupled to a high resolution mass spectrometer. In this case, due to a special inlet system, it was possible to operate the flame in a fairly wide C/O range without clogging of the inlet nozzles. This allowed pursuing the development of particle size distribution functions (PSDF) well into the regime of mature soot. In addition, on the low mass side of the particle spectra measurements with unity resolution were possible and this allowed gaining information concerning their growth mechanism and structure.

Finally, in an attempt to mimic Laser Induced Incandescence (LII) experiments the soot-laden molecular beam was exposed to IR irradiation. This resulted in a near complete destruction of nascent particles under LII typical fluences. Small C clusters between 3 and 17 C atoms were found. In addition and with much higher intensities, clusters comprising several hundreds of C atoms were also detected, the latter even at very low fluences when small clusters were totally absent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dobbins, Aerosol Sci. Technol. 41, 485 (2007) CrossRefGoogle Scholar
  2. 2.
    A. Ciajolo, in Combustion Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), pp. 333–344 Google Scholar
  3. 3.
    S.A. Ciatti, J.P. Hessler, K.O. Lee, A. Tentner, J. Zhue, SAE International, 2005-01-0128 Google Scholar
  4. 4.
    B.L. Wersborg, J.B. Howard, G.C. Williams, Proc. Combust. Inst. 14, 929 (1973) Google Scholar
  5. 5.
    B.L. Wersborg, A.C. Yeung, J.B. Howard, Proc. Combust. Inst. 14, 1439 (1975) Google Scholar
  6. 6.
    A. D’Alessio, A. D’Anna, A. D’Orsi, P. Minutolo, R. Barbella, A. Ciajolo, Proc. Combust. Inst. 24, 973 (1992) Google Scholar
  7. 7.
    P. Minutolo, G. Gambi, A. D’Alessio, A. D’Anna, Combust. Sci. Technol. 101, 31 (1994) CrossRefGoogle Scholar
  8. 8.
    R.L. VanderWal, Combust. Flame 112, 607 (1998) CrossRefGoogle Scholar
  9. 9.
    R.A. Dobbins, in Physical and Chemical Aspects of Combustion, ed. by F.L. Dryer, R.F. Sawyer (1998), pp. 107–133 Google Scholar
  10. 10.
    R.A. Dobbins, R.A. Fletcher, W. Lu, Combust. Flame 100, 301 (1995) CrossRefGoogle Scholar
  11. 11.
    A.C. Barone, A. D’Alessio, A. D’Anna, Combust. Flame 132, 181 (2003) CrossRefGoogle Scholar
  12. 12.
    L.A. Sgro, P. Minutolo, G. Basile, A. D’Alessio, Chemosphere 42, 671 (2001) CrossRefGoogle Scholar
  13. 13.
    B. Apicella, A. Ciajolo, I. Suelves, T.J. Morgan, A.A. Herod, R. Kandiyoty, Combust. Sci. Technol. 174, 345 (2002) CrossRefGoogle Scholar
  14. 14.
    B. Zhao, Z. Yang, J. Wang, M.V. Johnston, H. Wang, Aerosol Sci. Technol. 37, 173 (2003) Google Scholar
  15. 15.
    M.M. Maricq, Combust. Flame 137, 340 (2004) CrossRefGoogle Scholar
  16. 16.
    B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, Proc. Combust. Inst. 30, 1441 (2005) CrossRefGoogle Scholar
  17. 17.
    P. Minutolo, A. D’Anna, A. D’Alessio, Combust. Flame 152, 287 (2008) CrossRefGoogle Scholar
  18. 18.
    H.-H. Grotheer, H. Pokorny, K.L. Barth, M. Aigner, Chemosphere 57, 1335 (2004) CrossRefGoogle Scholar
  19. 19.
    A. D’Alessio, A. D’Anna, G. Gambi, P. Minutolo, J. Aerosol Sci. 29, 397 (1998) CrossRefGoogle Scholar
  20. 20.
    P. Minutolo, A. D’Anna, A. D’Alessio, Combust. Flame 152, 287 (2008) CrossRefGoogle Scholar
  21. 21.
    B.A. Mamyrin, Int. J. Mass Spectrom. 206, 261 (2001) Google Scholar
  22. 22.
    J. Ahrens, R. Kovacs, E.A. Shafranovskii, K.H. Homann, Ber. Bunsenges. Phys. Chem. 98, 265 (1994) Google Scholar
  23. 23.
    J. Happold, H.-H. Grotheer, M. Aigner, in Combustion Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), pp. 277–288 Google Scholar
  24. 24.
    A. Hospital, P. Roth, Proc. Combust. Inst. 23, 1573 (1990) Google Scholar
  25. 25.
    S. Fozin Foyet, Untersuchung des Ladungszustandes von Rußpartikeln in atmosphärischen Ethylen Luft Flammen. Diploma thesis, KIT Karlsruhe, March 2010 Google Scholar
  26. 26.
    M. Gälli, S.A. Guazotti, K.A. Prather, Aerosol Sci. Technol. 34, 381 (2001) Google Scholar
  27. 27.
    V. Zimmermann, U. Näher, S. Frank, T.P. Martin, Large Clusters of Atoms and Molecules (Kluwer Academic, Dordrecht, 1996), pp. 511–530 Google Scholar
  28. 28.
    J. Ahrens, A. Keller, R. Kocacs, K.-H. Homann, Ber. Bunsenges. Phys. Chem. 102, 1823 (1998) Google Scholar
  29. 29.
    H.-H. Grotheer, K. Hoffmann, K. Wolf, K. Kanjarkar, C. Wahl, M. Aigner, Combust. Flame 156, 791 (2009) CrossRefGoogle Scholar
  30. 30.
    J. Happold, H.-H. Grotheer, M. Aigner, Rapid Commun. Mass Spectrom. 21, 1247 (2007) CrossRefGoogle Scholar
  31. 31.
    Ph. Gerhardt, S. Löffler, K.-H. Homann, Proc. Combust. Inst. 22, 395 (1988) Google Scholar
  32. 32.
    A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, Combust. Flame 121, 610 (2000) CrossRefGoogle Scholar
  33. 33.
    K. Wolf, K. Thomson, F. Migliorini, H.-H. Grotheer, M. Köhler, K.P. Geigle, G. Smallwood, in IR-Laser Ablation of Species from Growing Soot Particles and Their Detection Through Mass Spectrometry 4th International LII Workshop 2010, Varenna, Italy, 18–20.04.2010, ICPET, NRC, Ottawa (Canada) Google Scholar
  34. 34.
    T. Gonzalez Baquet, H.-H. Grotheer, M. Aigner, Rapid Commun. Mass Spectrom. 21, 4060 (2007) CrossRefGoogle Scholar
  35. 35.
    T. Gonzalez Baquet, Measurement of soot precursor particles under atmospheric and low pressure conditions by means of time-of-flight mass spectrometry. Dissertation thesis, University Stuttgart, 2009; VT-Forschungsbericht 2009-01, DLR Google Scholar
  36. 36.
    J. Happold, Geschichtete polyzyklische aromatische Kohlenwasserstoffe als Bausteine der Rußbildung. Dissertation thesis, University Stuttgart, 2008; Forschungsbericht 2008-05, DLR Google Scholar
  37. 37.
    K.-H. Homann, Proc. Combust. Inst. 20, 857 (1984) Google Scholar
  38. 38.
    K.-H. Homann, E. Ströfer, in Soot in Combustion Systems and Its Toxic Properties, ed. by J. Lahaye, G. Prado (Plenum, New York, 1983), p. 217 Google Scholar
  39. 39.
    A. D’Anna, A. D’Alessio, P. Minatolo, in Soot Formation in Combustion: Mechanisms and Models of Soot Formation, ed. by H. Bockhorn. Springer Series in Chemical Physics, vol. 59 (Springer, Berlin, 1994), p. 83 CrossRefGoogle Scholar
  40. 40.
    R.A. Dobbins, H. Subramaniasivam, in Soot Formation in Combustion: Mechanisms and Models of Soot Formation, ed. by H. Bockhorn. Springer Series in Chemical Physics, vol. 59 (Springer, Berlin, 1994), p. 290 CrossRefGoogle Scholar
  41. 41.
    B. Zhao, Z. Yang, M.V. Johnston, H. Wang, A.S. Wexler, M. Balthasar, M. Kraft, Combust. Flame 133, 173 (2003) CrossRefGoogle Scholar
  42. 42.
    H.X. Chen, R.A. Dobbins, Combust. Sci. Technol. 159, 109 (2000) CrossRefGoogle Scholar
  43. 43.
    R.A. Dobbins, R.A. Fletcher, H.-C. Chang, Combust. Flame 115, 285 (1998) CrossRefGoogle Scholar
  44. 44.
    P. Minutolo, G. Gambi, A. D’Alessio, S. Carlucci, Atmos. Environ. 33, 2725 (1999) CrossRefGoogle Scholar
  45. 45.
    L.A. Sgro, A. De Filippo, G. Lanzuolo, A. D’Alessio, Combust. Inst. 31, 631 (2007) CrossRefGoogle Scholar
  46. 46.
    A. De Filippo, M. Commodo, P. Minutolo, L.A. Sgro, in Proc. European Combust. Meeting, Crete, Greece (2007) Google Scholar
  47. 47.
    A. D’Anna, A. Violi, Proc. Combust. Inst. 27, 425 (1998) Google Scholar
  48. 48.
    A. D’Anna, A. Violi, A. D’Alessio, Combust. Flame 121, 418 (2000) CrossRefGoogle Scholar
  49. 49.
    A. Violi, A.F. Sarofim, T.N. Truong, Combust. Flame 126, 1506 (2001) CrossRefGoogle Scholar
  50. 50.
    A. Violi, A. Kubota, T.N. Truong, W.J. Pitz, C.K. Westbrook, A.F. Sarofim, Proc. Combust. Inst. 29, 2343 (2002) CrossRefGoogle Scholar
  51. 51.
    A. Violi, A. D’Anna, A. D’Alessio, A.F. Sarofim, Chemosphere 51, 1047 (2003) CrossRefGoogle Scholar
  52. 52.
    A. Violi, Combust. Flame 139, 279 (2004) CrossRefGoogle Scholar
  53. 53.
    A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, in Combustion Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), pp. 205–230 Google Scholar
  54. 54.
    H.H. Grotheer, Combustion Colloquia 2009, 32rd Meeting on Combustion, Italian Section of the Combustion Institute, Naples, 26–28 April 2009 Google Scholar
  55. 55.
    L.A. Sgro, A. Borghese, L. Speranza, A.C. Barone, P. Minutolo, A. Bruno, A. D’Anna, A. D’Alessio, Environ. Sci. Technol. 42, 859 (2008) CrossRefGoogle Scholar
  56. 56.
    T. Ishiguro, Y. Takatori, K. Akihama, Combust. Flame 108, 231 (1997) CrossRefGoogle Scholar
  57. 57.
    W. Merchan-Merchan, A.V. Saveliev, L.A. Kennedy, Combust. Sci. Technol. 175, 2217 (2003) CrossRefGoogle Scholar
  58. 58.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaim-Rousselle, C. Schulz, R. Stirn, R. Tribalet, R. Suntz, J. Appl. Phys. B 87, 503 (2007) ADSCrossRefGoogle Scholar
  59. 59.
    M.M. Maricq, Combust. Flame 141, 406 (2005) CrossRefGoogle Scholar
  60. 60.
    M.M. Maricq, Combust. Flame 144, 730 (2006) CrossRefGoogle Scholar
  61. 61.
    M.M. Maricq, J. Aerosol Sci. 37, 858 (2006) CrossRefGoogle Scholar
  62. 62.
    M.M. Maricq, J. Aerosol Sci. 38, 141 (2007) CrossRefGoogle Scholar
  63. 63.
    M.M. Maricq, J. Aerosol Sci. 39, 141 (2008) CrossRefGoogle Scholar
  64. 64.
    H.F. Calcote, Combust. Flame 42, 215 (1981) CrossRefGoogle Scholar
  65. 65.
    A.B. Fialkov, Prog. Energy Combust. Sci. 23, 399 (1997) CrossRefGoogle Scholar
  66. 66.
    J.H. Miller, J.D. Herdmann, in Combustion Generated Fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), pp. 259–276 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.DLR Institute of Combustion TechnologyStuttgartGermany

Personalised recommendations