Advertisement

Applied Physics B

, Volume 102, Issue 3, pp 503–507 | Cite as

Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation

  • A. SaßEmail author
  • U. Vogl
  • M. Weitz
Article

Abstract

We study laser cooling of atomic gases by collisional redistribution, a technique applicable to ultradense atomic ensembles at a pressure of a few hundred bars. Frequent collisions of an optically active atom with a buffer gas shift atoms into resonance with a far red detuned laser beam, while spontaneous decay occurs close to the unperturbed resonance frequency. In such an excitation cycle, a kinetic energy of the order of the thermal energy k B T is extracted from the sample. Here we report of recent experiments investigating the cooling of a potassium–argon gas mixture, which compared to a rubidium–argon mixture investigated in earlier experiments has a smaller fine structure of the optically active alkali atoms. We observe a relative cooling of the potassium–argon gas mixture by 120 K.

Keywords

Probe Beam Laser Cool Incident Laser Beam Atomic Ensemble Potassium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Pringsheim, Z. Phys. 57, 739 (1929) ADSCrossRefGoogle Scholar
  2. 2.
    T.W. Hänsch, A.L. Schawlow, Opt. Commun. 13, 68 (1975) ADSCrossRefGoogle Scholar
  3. 3.
    S. Chu, C.N. Cohen-Tannoudji, W.D. Phillips, Rev. Mod. Phys. 70, 685 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    N. Djeu, W.T. Whitney, Phys. Rev. Lett. 46, 236 (1981) ADSCrossRefGoogle Scholar
  5. 5.
    R.I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, C. Mungan, Nature 377, 500 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    D.V. Seletskiy, S.D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, Nat. Photonics 4, 161 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Adams, E. Riis, Quantum Electron. 21, 1 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    S. Yeh, P.R. Berman, Phys. Rev. A 19, 1106 (1979) ADSCrossRefGoogle Scholar
  9. 9.
    P.R. Berman, S. Stenholm, Opt. Commun. 24, 155 (1978) ADSCrossRefGoogle Scholar
  10. 10.
    E. Giacobino, M. Tawil, P.R. Berman, O. Redi, H.H. Stroke, Phys. Rev. A 28, 2555 (1983) ADSCrossRefGoogle Scholar
  11. 11.
    U. Vogl, M. Weitz, Nature 460, 70 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    J. Pacale, J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974) ADSCrossRefGoogle Scholar
  13. 13.
    U. Vogl, M. Weitz, Phys. Rev. A 78, 011401 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Sell, M.A. Gearba, B.M. Patterson, T. Genda, B. Naumann, R.J. Knize, Opt. Lett. 35, 2146 (2010) CrossRefGoogle Scholar
  15. 15.
    H. Kuhn, O. Oldenberg, Phys. Rev. 41, 72 (1932) ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Kielkopf, J.A. Gwinn, J. Chem. Phys. 48, 12 (1968) CrossRefGoogle Scholar
  17. 17.
    W.B. Jackson, N.M. Amer, B.C. Boccara, D. Fournier, Appl. Opt. 20, 1333 (1981) ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Spear, R.E. Russo, J.R. Silva, Appl. Opt. 29, 4225 (1990) ADSCrossRefGoogle Scholar
  19. 19.
    M. Born, E. Wolf, Principles of Optics (Pergamon, Elmsford, 1999) Google Scholar
  20. 20.
    K. Iland, J. Wölk, R. Strey, D. Kashchiev, J. Chem. Phys. 127, 1544506 (2007) CrossRefGoogle Scholar
  21. 21.
    V.I. Kalikmanov, J. Wölk, T. Kraska, J. Chem. Phys. 128, 124506 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    P.G. Debenedetti, H.E. Stanley, Phys. Today 56, 40 (2003) CrossRefGoogle Scholar
  23. 23.
    B.M. Rosenbaum, S. Oshen, G. Thodos, J. Chem. Phys. 44, 2831 (1966) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Angewandte Physik der Universität BonnBonnGermany

Personalised recommendations