Applied Physics B

, Volume 102, Issue 4, pp 809–817 | Cite as

Investigations on the wavelength dependence of optically induced long-period Bragg gratings

  • M. Schäferling
  • N. Andermahr
  • C. Fallnich


We numerically analyze the conversion of transverse modes with optically induced long-period Bragg gratings. These gratings are generated by a recently developed technique which uses a writing beam guided within the fiber to introduce a transient grating via the optical Kerr effect. We demonstrate several settings for conversion between different transverse modes, including conversion over a broad spectral range of up to 60 nm. The tunability of the grating parameters could promote novel applications.


Graphic Processing Unit Probe Beam Refractive Index Change Core Radius Grating Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999) Google Scholar
  2. 2.
    K.O. Hill, B. Malo, K.A. Vineberg, F. Bilodeau, D.C. Johnson, I. Skinner, Electron. Lett. 29, 1270 (1990) CrossRefGoogle Scholar
  3. 3.
    V. Bhatia, Opt. Express 4, 457 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    S.W. James, R.P. Tatam, Meas. Sci. Technol. 14, R49 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, S. Ghalmi, Opt. Lett. 32, 2372 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    E.M. Dianov, D.S. Stardubov, S.A. Vasiliev, A.A. Frolov, O.I. Medvedkov, Opt. Lett. 22, 221 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Kondo, K. Nouchi, T. Mitsuyu, Opt. Lett. 24, 646 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    N. Andermahr, C. Fallnich, Opt. Express 18, 4411 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    G.P. Agrawal, Nonlinear Fiber Optics, 4 edn. (Academic Press, San Diego, 2007) Google Scholar
  10. 10.
    D. Yevick, Opt. Quantum Electron. 26, S185 (1994) CrossRefGoogle Scholar
  11. 11.
    N. Andermahr, C. Fallnich, Opt. Express 16, 20038 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    M. Asobe, Opt. Fiber Technol. 3, 142 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    NVIDIA Corporation, NVIDIA CUDA Programming Guide Version 3.0 (2010) Google Scholar
  14. 14.
    J. Bures, Guided Optics (Wiley/VCH, New York, 2009) Google Scholar
  15. 15.
    T. Erdogan, J. Lightwave Technol. 15, 1277 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    F. Mitschke, Fiber Optics (Springer, Berlin, 2009) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Applied PhysicsWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations