Applied Physics B

, Volume 104, Issue 2, pp 343–355 | Cite as

The effect of particle aggregation on the absorption and emission properties of mono- and polydisperse soot aggregates

Article

Abstract

This study concerns the effect of soot-particle aggregation on the soot temperature derived from the signal ratio in two-color laser-induced incandescence measurements. The emissivity of aggregated fractal soot particles was calculated using both the commonly used Rayleigh–Debye–Gans fractal-aggregate theory and the generalized Mie-solution method in conjunction with numerically generated fractal aggregates of specified fractal parameters typical of flame-generated soot. The effect of aggregation on soot temperature was first evaluated for monodisperse aggregates of different sizes and for a lognormally distributed aggregate ensemble at given signal ratios between the two wavelengths. Numerical calculations were also conducted to account for the effect of aggregation on both laser heating and thermal emission at the two wavelengths for determining the effective soot temperature of polydisperse soot aggregates. The results show that the effect of aggregation on laser energy absorption is important at low fluences. The effect of aggregation on soot emissivity is relatively unimportant in LII applications to typical laminar diffusion flames at atmospheric pressure, but it can become more important in flames at high pressures due to larger primary particles and wider aggregate distributions associated with enhanced soot loading.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Schulz, B.F. Kock, M. Hoffman, H. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    D.L. Hofeldt, SAE Technical Paper 930079 (1993) Google Scholar
  3. 3.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  6. 6.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006) CrossRefGoogle Scholar
  8. 8.
    C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 71, 95 (1990) CrossRefGoogle Scholar
  9. 9.
    Ü.Ö. Köylü, G.M. Faeth, Combust. Flame 89, 140 (1992) CrossRefGoogle Scholar
  10. 10.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interface Sci. 229, 261 (2000) CrossRefGoogle Scholar
  11. 11.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    F. Liu, G.J. Smallwood, in AIAA 2008-3917, AIAA 40th Thermophysics Conference, 23–26 June 2008, Seattle, Washington, USA (2008) Google Scholar
  13. 13.
    K.J. Daun, ASME J. Heat Transf. 132, 091202 (2010) CrossRefGoogle Scholar
  14. 14.
    F. Liu, G.J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 111, 302 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    W.H. Dalzell, G.C. Williams, H.C. Hottel, Combust. Flame 14, 161 (1970) CrossRefGoogle Scholar
  16. 16.
    Ü.Ö. Köylü, G.M. Faeth, ASME J. Heat Transf. 115, 409 (1993) CrossRefGoogle Scholar
  17. 17.
    T.L. Farias, M.G. Carvalho, Ü.Ö. Köylü, G.M. Faeth, ASME J. Heat Transf. 117, 152 (1995) CrossRefGoogle Scholar
  18. 18.
    F. Liu, K.J. Daun, V. Beyer, G.J. Smallwood, D.A. Greenhalgh, Appl. Phys. B 87, 179 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    C.F. Bohren, D.R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4.7 Google Scholar
  20. 20.
    Y.A. Levendis, K.R. Estrada, H.C. Hottel, Rev. Sci. Instrum. 63, 3608 (1992) ADSCrossRefGoogle Scholar
  21. 21.
    M. Kerker, The Scattering of Light. (Academic Press, New York, 1969), p. 84 Google Scholar
  22. 22.
    M.F. Iskander, H.Y. Chen, J.E. Penner, Appl. Opt. 28, 3083 (1989) ADSCrossRefGoogle Scholar
  23. 23.
    G.W. Mulholland, C.F. Bohren, K.A. Fuller, Langmuir 10, 2533 (1994) CrossRefGoogle Scholar
  24. 24.
    B.T. Draine, P.J. Flatau, Opt. Soc. Am. 11, 1491 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    L. Liu, M.I. Mishchenko, W.P. Arnott, J. Quant. Spectrosc. Radiat. Transf. 109, 2656 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    Y.-L. Xu, Appl. Opt. 34, 4573 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    Y.-L. Xu, Appl. Opt. 36, 9496 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    F. Liu, D.R. Snelling, in AIAA 2008-4362, AIAA 40th Thermophysics Conference, 23–26 June 2008, Seattle, Washington, USA (2008) Google Scholar
  29. 29.
    F. Liu, G.J. Smallwood, ASME J. Heat Transf. 132, 023308-1 (2010) Google Scholar
  30. 30.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 144, 782 (2006) CrossRefGoogle Scholar
  32. 32.
    K.A. Thomson, Ö.L. Gülder, E.J. Weckman, R.A. Fraser, G.J. Smallwood, D.R. Snelling, Combust. Flame 140, 222 (2005) CrossRefGoogle Scholar
  33. 33.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, ASME J. Heat Transf. 123, 814 (2001) CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  1. 1.Institute for Chemical Process & Environmental TechnologyNational Research CouncilOttawaCanada

Personalised recommendations