Applied Physics B

, Volume 102, Issue 3, pp 551–554 | Cite as

Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses

  • F. Garwe
  • A. Schmidt
  • G. Zieger
  • T. May
  • K. Wynne
  • U. Hübner
  • M. Zeisberger
  • W. Paa
  • H. Stafast
  • H.-G. Meyer
Rapid Communication

Abstract

We report on the investigation of terahertz (THz) emission from gold-coated nanogratings (500 nm grating constant) upon femtosecond laser irradiation (785 nm, 150 fs, 1 kHz, ≤1 mJ/pulse). Unlike common assumptions, THz emission is not only observed in case of rear side irradiation (through substrate (Welsh et al. in Phys. Rev. Lett. 98:026803, 2007; Welsh and Wynne in Opt. Express 17:2470–2480, 2009)) of the nanograting, but also in case of front side excitation (through air). Furthermore in both cases, THz emission propagates in the direction of laser beam propagation and reverse. Based on these findings, we suggest a new approach to describe the newly observed phenomena. Using a highly sensitive and fast superconducting transition edge sensor (TES) as calorimeter, it was possible to directly measure the absolute energy of the emitted THz pulses in a defined spectral and spatial range, enabling for the first time a quantitative analysis of the THz emission process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Brucherseifer, M. Nagel, P. Haring-Bolivar, H. Kurz, A. Bosserhoff, R. Büttner, Appl. Phys. Lett. 77, 4049 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    E.J. Heilweil, J.E. Maslar, W.A. Kimes, N.D. Bassim, P.K. Schenck, Opt. Lett. 34, 1360 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    T. May, S. Anders, V. Zakosarenko, M. Starkloff, H.-G. Meyer, G. Thorwirth, E. Kreysa, Proc. SPIE 6549, 65490D (2007) ADSCrossRefGoogle Scholar
  4. 4.
    M. Sherwin, Nature 420, 131 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    E. Bründermann, D. Chamberlin, E. Haller, Appl. Phys. Lett. 76, 2991 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    K. Sakai (ed.), Terahertz Optoelectronics. Topics in Applied Physics, vol. 97 (Springer, Berlin, 2005) Google Scholar
  7. 7.
    T. Löffler, T. Hahn, M. Thomson, F. Jacob, H. Roskos, Opt. Express 13, 5353 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    G. Welsh, N. Hunt, K. Wynne, Phys. Rev. Lett. 98, 026803 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    K. Irwin, Appl. Phys. Lett. 66, 1998 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    M. Naftaly, R.E. Miles, in Terahertz Frequency Detection and Identification of Materials and Objects, ed. by R.E. Miles, X.-C. Zhang, H. Eisele, A. Krotkus (Springer, Dordrecht, 2007), pp. 107–122 CrossRefGoogle Scholar
  11. 11.
    G. Welsh, K. Wynne, Opt. Express 17, 2470 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Gao, M.-K. Chen, C.-E. Yang, Y.-C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, C. Luo, J. Appl. Phys. 106, 074302 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    J. Kupersztych, Phys. Rev. Lett. 95, 147401 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, K. König, G. Hüttmann, W. Paa, J. Popp, W. Fritzsche, Nanotechnology 19, 055207 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • F. Garwe
    • 1
  • A. Schmidt
    • 1
  • G. Zieger
    • 1
  • T. May
    • 1
  • K. Wynne
    • 3
  • U. Hübner
    • 1
  • M. Zeisberger
    • 1
  • W. Paa
    • 1
  • H. Stafast
    • 1
    • 2
  • H.-G. Meyer
    • 1
  1. 1.Institute of Photonic TechnologyJenaGermany
  2. 2.Faculty of Physics and AstronomyFriedrich-Schiller-UniversityJenaGermany
  3. 3.Department of Physics, SUPAUniversity of StrathclydeGlasgowScotland, UK

Personalised recommendations