Applied Physics B

, Volume 104, Issue 2, pp 409–425 | Cite as

Sooting turbulent jet flame: characterization and quantitative soot measurements

  • M. Köhler
  • K. P. Geigle
  • W. Meier
  • B. M. Crosland
  • K. A. Thomson
  • G. J. Smallwood
Article

Abstract

Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation.

The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers’ needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting “standard flame”, this flame is suggested as a new reference turbulent sooting flame.

The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

Keywords

Soot Jet flame Laser diagnostics Turbulent combustion Laser-induced incandescence Validation data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Committee on Aviation Environmental Protection, Working Group 3, CAEP/7-IP/6, Montreal, Canada (2007) Google Scholar
  2. 2.
    A. Petzold, R. Marsh, M. Johnson, M. Miller, Y. Sevcenco, D. Delhaye, X. Vancassel, A. Ibrahim, A. Veira, P. Williams, H. Bauer, A. Crayford, S. Morris, P. Kay, P. Bowen, W.D. Bachalo, D. Raper, Final report, EASA.2008.OP.13, EASA Cologne (2009) Google Scholar
  3. 3.
    Society of Automotive Engineers Inc, AIR 5892 (2004) Google Scholar
  4. 4.
    Society of Automotive Engineers Inc, AIR 6037 (2009) Google Scholar
  5. 5.
    W. Lazik, T. Doerr, S. Bake, R. von der Bank, L. Rackwitz, in Proc. ASME Turbo Expo 2008, Power for Land, Sea and Air, 09–13.06.2008, Berlin, Paper GT2008-51115 (2008) Google Scholar
  6. 6.
    H. Richter, M. Braun-Unkhoff, S. Granata, J. Yu, E. Goos, N. Slavinskaya, P. Frank, W. Green, J. Howard, in Proc. European Combustion Meeting ECM2005, Louvain-la-Neuve, Belgium, Paper 163 (2005) Google Scholar
  7. 7.
    M. Kamphus, M. Braun-Unkhoff, K. Kohse-Höinghaus, Combust. Flame 152, 28 (2008) CrossRefGoogle Scholar
  8. 8.
    J. Appel, M. Frenklach, H. Bockhorn, Combust. Flame 121, 122 (2000) CrossRefGoogle Scholar
  9. 9.
    M. Frenklach, Phys. Chem. Chem. Phys. 4, 2028 (2002) CrossRefGoogle Scholar
  10. 10.
    S. Granata, F. Cambianica, S. Zinesi, T. Faravelli, E. Ranzi, in Proc. European Combustion Meeting ECM2005 (Louvain-la-Neuve, Belgium), Paper 035 (2005) Google Scholar
  11. 11.
    D.O. Lignell, J.H. Chen, P.J. Smith, T. Lu, C.K. Law, Combust. Flame 151, 2 (2007) CrossRefGoogle Scholar
  12. 12.
    I. Kennedy, W. Kollmann, AIAA J. 29, 1452 (1991) ADSCrossRefGoogle Scholar
  13. 13.
    B. Zamuner, F. Dupoirieux, Combust. Sci. Technol. 158, 407 (2000) CrossRefGoogle Scholar
  14. 14.
    M. Di Domenico, P. Gerlinger, M. Aigner, Combust. Flame 157, 246 (2010) CrossRefGoogle Scholar
  15. 15.
    M. Di Domenico, PhD thesis Universität Stuttgart (2008) http://elib.uni-stuttgart.de/opus/volltexte/2008/3624/pdf/DiDomenico_Doktorarbeit.pdf
  16. 16.
    R.S. Barlow, Proc. Combust. Inst. 31, 49 (2007) CrossRefGoogle Scholar
  17. 17.
    E.P. Hassel, S. Linow, Meas. Sci. Technol. 11, R37 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    W.L. Oberkampf, T.G. Trucano, Prog. Aerosp. Sci. 38, 209 (2002) CrossRefGoogle Scholar
  19. 19.
    J.C. Oefelein, R.W. Schefer, R.S. Barlow, AIAA J. 44, 418 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    W. Strahle, Prog. Energy Combust. Sci. 12, 253 (1986) CrossRefGoogle Scholar
  21. 21.
    F.C. Gouldin, R.W. Schefer, S.C. Johnson, W. Kollmann, Prog. Energy Combust. Sci. 12, 257 (1986) ADSCrossRefGoogle Scholar
  22. 22.
    G.M. Faeth, S.G. Samuelsen, Prog. Energy Combust. Sci. 12, 305 (1986) CrossRefGoogle Scholar
  23. 23.
    M.C. Drake, W. Kollmann, Prog. Energy Combust. Sci. 12, 373 (1986) CrossRefGoogle Scholar
  24. 24.
    TNF Workshop web site, available at http://www.ca.sandia.gov/TNF Sandia National Laboratories (2010)
  25. 25.
    S.-Y. Lee, S.R. Turns, R.J. Santoro, Combust. Flame 156, 2264 (2009) CrossRefGoogle Scholar
  26. 26.
    J.H. Kent, S.J. Bastin, Combust. Flame 56, 29 (1984) CrossRefGoogle Scholar
  27. 27.
    J.H. Kent, D. Honnery, Combust. Sci. Technol. 54, 383 (1987) CrossRefGoogle Scholar
  28. 28.
    A. Coppalle, D. Joyeux, Combust. Flame 96, 275 (1994) CrossRefGoogle Scholar
  29. 29.
    R.P. Lindstedt, S.A. Louloudi, Proc. Combust. Inst. 30, 775 (2005) CrossRefGoogle Scholar
  30. 30.
    R.L. Vander Wal, Exp. Fluids 23, 281 (1997) CrossRefGoogle Scholar
  31. 31.
    S.J. Brookes, J.B. Moss, Combust. Flame 116, 49 (1999) CrossRefGoogle Scholar
  32. 32.
    A. Kronenburg, R.W. Bilger, J.H. Kent, Combust. Flame 121, 24 (2000) CrossRefGoogle Scholar
  33. 33.
    N.H. Qamar, G.J. Nathan, Z.T. Alwahabi, K.D. King, Proc. Combust. Inst. 30, 1493 (2005) CrossRefGoogle Scholar
  34. 34.
    Y. Xin, J.P. Gore, Proc. Combust. Inst. 30, 719 (2005) CrossRefGoogle Scholar
  35. 35.
    C.R. Shaddix, J. Zhang, R.W. Schefer, Conference Paper LACSEA, OSA (2010) Google Scholar
  36. 36.
    N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, K.D. King, Combust. Flame 156, 1339 (2009) CrossRefGoogle Scholar
  37. 37.
    R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Int. J. Therm. Sci. 49, 1457 (2010) CrossRefGoogle Scholar
  38. 38.
    C.K. Westbrook, F.L. Dryer, K.P. Schug, Proc. Combust. Inst. 19, 153 (1998) Google Scholar
  39. 39.
    R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002) Google Scholar
  40. 40.
    J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    T.T. Charalampopoulos, J.D. Felske, Combust. Flame 68, 283 (1987) CrossRefGoogle Scholar
  42. 42.
    R.A. Dobbins, G.W. Mulholland, N.P. Bryner, Atmos. Environ. 28, 889 (1994) CrossRefGoogle Scholar
  43. 43.
    K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996) CrossRefGoogle Scholar
  44. 44.
    M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saatho, O.W. Schöck, J. Aerosol Sci. 34, 1421 (2003) CrossRefGoogle Scholar
  45. 45.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  46. 46.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) ADSCrossRefGoogle Scholar
  47. 47.
    A. Coderre, Master thesis, Carlton University, Ottawa (2009) Google Scholar
  48. 48.
    C.J. Dasch, Appl. Opt. 31, 1146 (1992) ADSCrossRefGoogle Scholar
  49. 49.
    K.P. Geigle, Y. Schneider-Kühnle, M.S. Tsurikov, R. Hadef, R. Lückerath, V. Krüger, W. Stricker, M. Aigner, Proc. Combust. Inst. 30, 1645 (2005) CrossRefGoogle Scholar
  50. 50.
    B.M. Crosland, M.R. Johnson, K.A. Thomson, Appl. Phys. B (2010) doi:10.1007/s00340-010-4130-7 Google Scholar
  51. 51.
    R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993) CrossRefGoogle Scholar
  52. 52.
    M.S. Tsurikov, K.P. Geigle, V. Krüger, Y. Schneider-Kühnle, W. Stricker, R. Lückerath, R. Hadef, M. Aigner, Combust. Sci. Technol. 177, 1835 (2005) CrossRefGoogle Scholar
  53. 53.
    T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Combust. Flame 157, 1261 (2010) CrossRefGoogle Scholar
  54. 54.
    C.J. Dasch, D.M. Heffelfinger, Combust. Flame 85, 389 (1991) CrossRefGoogle Scholar
  55. 55.
    J. Hentschel, R. Suntz, H. Bockhorn, Appl. Opt. 44, 6673 (2005) ADSCrossRefGoogle Scholar
  56. 56.
    O. Lammel, H. Schütz, G. Schmitz, R. Lückerath, M. Stöhr, B. Noll, M. Aigner, M. Hase, W. Krebs, J. Eng. Gas Turbine Power 132, 121503 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Köhler
    • 1
    • 4
  • K. P. Geigle
    • 1
  • W. Meier
    • 1
  • B. M. Crosland
    • 2
  • K. A. Thomson
    • 3
  • G. J. Smallwood
    • 3
  1. 1.German Aerospace CenterInstitute of Combustion TechnologyStuttgartGermany
  2. 2.Department of Mechanical & Aerospace EngineeringCarleton UniversityOttawaCanada
  3. 3.Institute for Chemical Process and Environmental TechnologyNational Research CouncilOttawaCanada
  4. 4.Institut für VerbrennungstechnikDeutsches Zentrum für Luft- und Raumfahrt (DLR)StuttgartGermany

Personalised recommendations