Applied Physics B

, Volume 104, Issue 2, pp 297–305 | Cite as

Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame

  • G. Cléon
  • T. Amodeo
  • A. Faccinetto
  • P. DesgrouxEmail author


In this work, the two-excitation wavelength laser induced incandescence (LII) method has been applied in a low-pressure premixed methane/oxygen/nitrogen flame (equivalence ratio 2.32) to determine the variation of the ratio of the soot absorption functions at 532 nm and 1064 nm E(m,532 nm)/E(m,1064 nm) along the flame. This method relies on the comparison of LII signals measured upon two different excitation wavelengths (here 532 nm and 1064 nm) and with laser fluences selected in such a way that the soot particles are equally laser-heated. The comparison of the laser fluences at 532 nm and 1064 nm leads to an easy determination of E(m,532 nm)/E(m,1064 nm). The reliability of the method is demonstrated for the first time in a low pressure flame in which the soot nucleation zone can be spatially resolved and which contains soot particles acting differently with the laser fluence according to their residence time in the flame. The method is then applied to determine the profile of E(m,532 nm)/E(m,1064 nm) along the flame. A very important decrease of this ratio is observed in the region of nascent soot, while the ratio remains constant at high distance above the burner. Implication on temperature determination from spectrally resolved measurement of flame emission is studied.


Polycyclic Aromatic Hydrocarbon Soot Particle Soot Formation Soot Volume Fraction Temporal Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996) CrossRefGoogle Scholar
  2. 2.
    S.C. Lee, C.L. Tien, Proc. Combust. Inst. 18, 1159 (1981) Google Scholar
  3. 3.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 430, 577 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    J. Zhu, M.Y. Choi, G.W. Mulholland, S.L. Manzello, L. Gritzo, J. Suo-Anttila, Proc. Combust. Inst. 29, 2367 (2002) CrossRefGoogle Scholar
  5. 5.
    K.A. Jensen, J.M. Suo-Anttila, L. Blevins, Combust. Sci. Technol. 179, 2453 (2007) CrossRefGoogle Scholar
  6. 6.
    T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, Int. J. Heat Mass Transf. 50, 1616 (2007) CrossRefGoogle Scholar
  7. 7.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  8. 8.
    J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Copalle, K.F. Ren, Appl. Phys. B (2010, accepted), special issue: LII Workshop Google Scholar
  9. 9.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    C. Schulz, B.F. Kock, M. Hoffman, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005) CrossRefGoogle Scholar
  12. 12.
    S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, Combust. Flame 115, 253 (1998) CrossRefGoogle Scholar
  13. 13.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000) CrossRefGoogle Scholar
  14. 14.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, E.J. Weckman, R.A. Fraser, AIAA J. 40, 1789 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 100, 655 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    H. Bockhorn, F. Fetting, G. Wannemacher, H.W. Wenz, in Symp. (Intern.) on Combustion, vol. 19 (1982), p. 1413 Google Scholar
  17. 17.
    P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008) CrossRefGoogle Scholar
  18. 18.
    A. Faccinetto, P. Desgroux, M. Ziskind, E. Therssen, C. Focsa, Combust. Flame 158, 227 (2011) CrossRefGoogle Scholar
  19. 19.
    I.S. Burns, X. Mercier, M. Wartel, R.S.M. Chrystie, J. Hult, C.F. Kaminski, Proc. Combust. Inst. 33, 799 (2011) CrossRefGoogle Scholar
  20. 20.
    X. Mercier, M. Wartel, J.F. Pauwels, P. Desgroux, Appl. Phys. B 91, 387 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    M. Wartel, J.F. Pauwels, P. Desgroux, X. Mercier, Appl. Phys. B 100, 933 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    A. D’Alessio, A. D’Anna, P. Minutolo, L.A. Sgro, in Combustion Generated fine Carbonaceous Particles, ed. by H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (KIT Scientific Publishing, Karlsruhe, 2009), pp. 205–230, Chap. 14 Google Scholar
  25. 25.
    R. Lemaire, E. Therssen, P. Desgroux, Fuel 89, 3952 (2010) CrossRefGoogle Scholar
  26. 26.
    A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, Proc. Combust. Inst. 25, 679 (1994) Google Scholar
  27. 27.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010) CrossRefGoogle Scholar
  28. 28.
    W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969) CrossRefGoogle Scholar
  29. 29.
    Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988) CrossRefGoogle Scholar
  30. 30.
    J.P. Cain, P.L. Gassman, H. Wang, A. Laskin, Phys. Chem. Chem. Phys. 12, 5206 (2010) CrossRefGoogle Scholar
  31. 31.
    M. Alfè, B. Apicella, J.N. Rouzaud, A. Tregrossi, A. Ciajolo, Combust. Flame 157, 1959 (2010) CrossRefGoogle Scholar
  32. 32.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Combust. Flame 153, 384 (2008) CrossRefGoogle Scholar
  33. 33.
    S. Prucker, W. Meier, W. Stricker, Rev. Sci. Instrum. 65, 2908 (1994) ADSCrossRefGoogle Scholar
  34. 34.
    J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    F. Migliorini, S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 96, 637 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • G. Cléon
    • 1
  • T. Amodeo
    • 1
    • 2
  • A. Faccinetto
    • 1
  • P. Desgroux
    • 1
    Email author
  1. 1.Laboratoire de Physico-Chimie des Processus de Combustion et de l’Atmosphère (PC2A, UMR CNRS 8522)Villeneuve d’Ascq cedexFrance
  2. 2.INERIS, Direction des Risques Chroniques, Pôle CARAUnité NOVA, Parc Technologique AlataVerneuil en HalatteFrance

Personalised recommendations