Applied Physics B

, Volume 102, Issue 4, pp 765–768 | Cite as

Photoconductivity in Yb-doped oxides at high excitation densities

  • C. Brandt
  • S. T. Fredrich-Thornton
  • K. Petermann
  • G. Huber
Article

Abstract

Photoconductivity has been found in the dielectric laser materials Yb3+:YAG and Yb3+:Lu2O3 under 940 nm irradiation with an unexpected high photocurrent up to several 100 nanoampères. The nonlinear intensity dependence points to the occurrence of a cooperative upconversion mechanism with 2–3 excited Yb3+-ions in YAG and 2 excited Yb3+-ions in Lu2O3 being involved. According to the results two tentative models of this upconversion process are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, A. Giesen, in Advanced Solid-State Photonics, Vienna, Austria (2005). TuB49 Google Scholar
  3. 3.
    D. Fagundes-Peters, N. Martynyuk, K. Luenstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, A. Hofstaetter, J. Lumin. 125, 238 (2007) CrossRefGoogle Scholar
  4. 4.
    S.T. Fredrich, D. Fagundes-Peters, V. Peters, V. Laguta, K. Petermann, G. Huber, in 10th Europhysical Conference on Defects in Insulating Materials, Milano, Italy (2006). PMo74 Google Scholar
  5. 5.
    R. Peters, C. Kränkel, K. Petermann, G. Huber, in Advanced Solid-State Photonics, Nara, Japan (2008). MF2 Google Scholar
  6. 6.
    S.T. Fredrich-Thornton, R. Peters, K. Petermann, G. Huber, in Advanced Solid-State Photonics, Denver, USA (2009). TuB18 Google Scholar
  7. 7.
    C.W. Thiel, H. Cruguel, Y. Sun, G.J. Lapeyre, R.M. Macfarlane, R.W. Equall, R.L. Cone, J. Lumin. 94–95, 1 (2001) CrossRefGoogle Scholar
  8. 8.
    S. Kimura, F. Arai, M. Ikezawa, J. Phys. Soc. Jpn. 69, 3451 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    N. Guerassimova, N. Garnier, C. Dujardin, A.G. Petrosyan, C. Pédrini, J. Lumin. 94–95, 10 (2001) Google Scholar
  10. 10.
    L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink, J. Lumin. 91, 177 (2000) CrossRefGoogle Scholar
  11. 11.
    I. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, A. Vasil’ev, J. Phys., Condens. Matter 17, 5587 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    C. Erginsoy, Phys. Rev. 80, 1104 (1950) ADSCrossRefGoogle Scholar
  13. 13.
    U. Wolters, S.T. Fredrich-Thornton, F. Tellkamp, K. Petermann, G. Huber, in CLEO/Europe-EQEC, Munich, Germany (2009). CA9.2 Google Scholar
  14. 14.
    B.G. Yacobi, Semiconductor Materials, An Introduction to Basic Principles (Kluwer Academic/Plenum Publishers, New York, 2003) Google Scholar
  15. 15.
    K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen, J. Cryst. Growth 275, 135 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Brandt
    • 1
  • S. T. Fredrich-Thornton
    • 1
  • K. Petermann
    • 1
  • G. Huber
    • 1
  1. 1.Institute of Laser-PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations