Applied Physics B

, Volume 102, Issue 2, pp 357–365 | Cite as

Investigation of unburned carbon particles in fly ash by means of laser light scattering

  • R. Q. Iannone
  • R. Morlacchi
  • R. Calabria
  • P. Massoli


A new optical method to determine the percentage of unburned carbon particles in fly ash from combustion of pulverized coal has been developed. The technique exploits the different properties of particles of ash and coal in the elastic scattering of polarized light.

The polarization measurements were performed using a linearly polarized laser source and a receiving system able to simultaneously detect the scattered radiation polarized in parallel and orthogonal planes, under the scattering angle of 60°. The parallel and perpendicular components of the scattered light intensities are measured in order to determine the polarization ratio. The operation of the system was tested under various conditions using monodisperse glass spheres. The performance of the novel device was assessed in several sets of measurements with samples of fly ash produced from coal fired power plants.

A correlation between the relative content of coal and ashes and the polarization ratio of scattered light was demonstrated. The resulting polarization ratio showed values ranging from 1.25 to 0.94 for a carbon content of 1.17 wt% and 16.3 wt%, respectively. The uncertainty on the measured percentage of unburned carbon was about 1%.

The proposed device represents an attractive tool for monitoring real-time burnout and combustion efficiency.


Brewster Angle Polarization Ratio Depolarization Ratio Unburned Carbon Angular Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Energy Outlook 2009, Chapter 4—coal. Report DOE/EIA-0484 (2009) Google Scholar
  2. 2.
    L. Douglas Smoot, Fundamentals of Coal Combustion: For Clean and Efficient Use (Elsevier, Amsterdam, 1993) Google Scholar
  3. 3.
    A.M. Carpenter, S. Niksa, D. Scott, Z. Wu, IEA clean coal centre (2007).
  4. 4.
    M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36, 327 (2010) CrossRefGoogle Scholar
  5. 5.
    T. Ctvrtnickova, M.P. Mateo, A. Yañez, G. Nicolas, Spectrochim. Acta Part B 64, 1093 (2009) CrossRefADSGoogle Scholar
  6. 6.
    M. Shibaoka, Fuel 65, 449 (1986) CrossRefGoogle Scholar
  7. 7.
    L.K.A. Sear, The Properties and Use of Coal Fly Ash (Thomas Telford Ltd., 2001) Google Scholar
  8. 8.
    Federal Highway Administration, Coal fly ash in user guidelines for byproduct and secondary use materials in pavement construction. Report FHWA-RD-97-148, Turner Fairbank Highway Research Center (2008).
  9. 9.
    ASTM standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete C618-05, 04.02, American Society for Testing Materials (2010) Google Scholar
  10. 10.
    European Committee for Standardization, Brussels, Fly ash for concrete. Part 1. Definition, specifications and conformity criteria (EN 450-1) (2005) Google Scholar
  11. 11.
    M.P. Martinez, Apparatus and processing for removing unburned carbon in fly ash. US Patent 5,555,821 (1996) Google Scholar
  12. 12.
    N.E. Altun, C. Xiao, J.-Y. Hwang, Fuel Process. Technol. 90, 1464 (2009) CrossRefGoogle Scholar
  13. 13.
    ASTM C311-07 standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete C311-07, 04.02. American Society for Testing Materials (2010) Google Scholar
  14. 14.
    N.J. Harris, K.C. Hover, K.J. Folliard, T. Ley, J. ASTM Int. 3, 12 (2006) Google Scholar
  15. 15.
    R.C. Brown, Method and apparatus of measuring unburned carbon in fly ash. US Patent 5,069,551 (1991) Google Scholar
  16. 16.
    M. Fan, R.C. Brown, Fuel 80, 1545 (2001) CrossRefGoogle Scholar
  17. 17.
    N.G. Cutmore, Determination of carbon in fly ash from microwave attenuation and phase shift. US Patent 5,177,444 (1993) Google Scholar
  18. 18.
    T. Melick, T. Sommer, H. Conrads, in Conference on Unburned Carbon on Utility Fly Ash (2005). Google Scholar
  19. 19.
    E. Peltonen, A. Somerikko, T. Viitanen, Procedure and means for measuring the coal content in quick ash. US Patent 4,498,338 (1983) Google Scholar
  20. 20.
    L. Mortensen, G. Sotter, Power Eng. 93, 33 (1989) Google Scholar
  21. 21.
    A. Schneider, R. Chabicovsky, A. Aumuller, Sens. Actuators A, Phys. 67, 24 (1998) CrossRefGoogle Scholar
  22. 22.
    J. Golas, H. Jankowski, B. Niewczas, J. Piechna, A. Skiba, W. Szkutnik, Z.P. Szkutnik, R. Wartak, C. Worek, Proc. SPIE 4516, 267 (2001) CrossRefADSGoogle Scholar
  23. 23.
    A.K. Ouazzane, J.L. Castagner, A.R. Jones, S. Ellahi, Fuel 81, 1907 (2002) CrossRefGoogle Scholar
  24. 24.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Google Scholar
  25. 25.
    A.R. Jones, Prog. Energy Combust. Sci. 25, 1 (1999) CrossRefGoogle Scholar
  26. 26.
    R. Calabria, P. Massoli, in Laser Diagnostics in Combustion, 1 edn., ed. by M. Lackner (ProcessEng Engineering GmbH, 2009), pp. 11–32 Google Scholar
  27. 27.
    J.B.A. Card, A.R. Jones, Combust. Flame 86, 394 (1991) CrossRefGoogle Scholar
  28. 28.
    J.B.A. Card, A.R. Jones, Part. Part. Syst. Charact. 11, 258 (1994) CrossRefGoogle Scholar
  29. 29.
    H.C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957) Google Scholar
  30. 30.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969) Google Scholar
  31. 31.
    T. Wriedt, Part. Part. Syst. Charact. 15, 67 (1998) CrossRefGoogle Scholar
  32. 32.
    F. Beretta, A. Cavaliere, A. D’Alessio, Proc. Combust. Inst. 20, 1249 (1984) Google Scholar
  33. 33.
    P. Massoli, F. Beretta, A. D’Alessio, Appl. Opt. 28, 1200 (1989) CrossRefADSGoogle Scholar
  34. 34.
    A. D’Alessio, F. Beretta, P. Massoli, M. Lazzaro, in Physical and Chemical Aspects of Combustion, ed. by F.L. Dryer, R.F. Sawyer, (Gordon & Breach, New York, 1997), pp. 317–351 Google Scholar
  35. 35.
    P. Massoli, F. Beretta, A. D’Alessio, Chem. Eng. Commun. 75, 171 (1989) CrossRefGoogle Scholar
  36. 36.
    A.F. Sarofim, Proc. Combust. Inst. 21, 1 (1986) Google Scholar
  37. 37.
    R.P. Gupta, T.F. Wall, Combust. Sci. Technol. 61, 145 (1985) Google Scholar
  38. 38.
    S.A. Boothroyd, A.R. Jones, K.W. Nicholson, R. Wood, Combust. Flame 69, 235 (1987) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Q. Iannone
    • 1
  • R. Morlacchi
    • 1
  • R. Calabria
    • 2
  • P. Massoli
    • 2
  1. 1.Loccioni, Environment R&D Lab.General Impianti srlMoie di Maiolati (AN)Italy
  2. 2.Istituto MotoriCNRNapoliItaly

Personalised recommendations