Advertisement

Applied Physics B

, Volume 103, Issue 4, pp 847–852 | Cite as

Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors

  • A. Bednarkiewicz
  • D. Wawrzynczyk
  • M. Nyk
  • W. Strek
Open Access
Article

Abstract

Although efficient in heat generation, gold nanoparticles dedicated for photostimulated localized hyperthermia treatment (LHT) lack luminescent properties suitable for detection in heterogeneous and autofluorescent tissue. Here, we study and report the use of bifunctional luminescent neodymium (Nd3+) ions doped α-NaYF4 colloidal nanoparticles as potential nanoheaters suitable for LHT. Up to 35°C (0.8°C/mW@514.5 nm) temperature rise in ∼0.5 ml colloidal 25%Nd3+:NaYF4 solution was achieved in comparison to around a 4°C rise for the undoped colloidal NaYF4. The maximum temperature (T max ) was linearly proportional to the concentration of Nd3+ dopant. The time required to elevate temperature to 1/e×T max  varied from 100 to 135 seconds. The proposed approach gives premises to the construction of multi-functional therapeutic agents detectable by means of fluorescence molecular imaging.

Keywords

Gold Nanostructures Fluorescence Molecular Imaging Ligand Oleic Acid Optical Transmission Window Water Colloidal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Busch, Berl. Klein Wochenschr. 5, 137 (1868) Google Scholar
  2. 2.
    U. Hobohm, Cancer Immunol. Immunother. 50, 391 (2001) Google Scholar
  3. 3.
    U. Hobohm, Br. J. Cancer 92, 421 (2005) Google Scholar
  4. 4.
    F.Y. Cheng, C.H. Su, P.C. Wu, C.S. Yeh, Chem. Commun. (Camb.) 46, 3167 (2010) CrossRefGoogle Scholar
  5. 5.
    G. Baronzio, A. Gramaglia, G. Fiorentini, In Vivo 23, 143 (2009) Google Scholar
  6. 6.
    A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, M.E. McHenry, J. Appl. Phys. 103, 07A307 (2008) CrossRefGoogle Scholar
  7. 7.
    J.N. Shan, J.B. Chen, J. Meng, J. Collins, W. Soboyejo, J.S. Friedberg, Y.G. Ju, J. Appl. Phys. 104, 094308 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    A.R. Lowery, A.M. Gobin, E.S. Day, N.J. Halas, J.L. West, Int. J. Nanomed. 1, 149 (2006) CrossRefGoogle Scholar
  9. 9.
    M. Wang, C.C. Mi, W.X. Wang, C.H. Liu, Y.F. Wu, Z.R. Xu, C.B. Mao, S.K. Xu, ACS Nano 3, 1580 (2009) CrossRefGoogle Scholar
  10. 10.
    R. Abdul Jalil, Y. Zhang, Biomaterials 29, 4122 (2008) CrossRefGoogle Scholar
  11. 11.
    G.P. Goodrich, L. Bao, K. Gill-Sharp, K.L. Sang, J. Wang, J.D. Payne, J. Biomed. Opt. 15, 018001 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, J. Chen, ACS Nano 4, 113 (2010) zbMATHCrossRefGoogle Scholar
  13. 13.
    J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett. 7, 1318 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    L. Au, D. Zheng, F. Zhou, Z.Y. Li, X. Li, Y. Xia, ACS Nano 2, 1645 (2008) CrossRefGoogle Scholar
  15. 15.
    H. Park, J. Yang, J. Lee, S. Haam, I.H. Choi, K.H. Yoo, ACS Nano 3, 2919 (2009) CrossRefGoogle Scholar
  16. 16.
    K. Dickson et al., Nanotechnology 21, 105105 (2010) CrossRefGoogle Scholar
  17. 17.
    K. Yang, S. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. Article ASAP (2010) Google Scholar
  18. 18.
    M. Nyk, A. Kuzmin, P.N. Prasad, W. Strek, C.B. de Araujo, Opt. Mater. 31, 800 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    V.K. Tikhomirov, K. Driesen, V.D. Rodriguez, P. Gredin, M. Mortier, V.V. Moshchalkov, Opt. Express 17, 11794 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    S. Singh, K. Kumar, S. Rai, Appl. Phys. B, Lasers Opt. 1 (2010) Google Scholar
  21. 21.
    M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, Nano Lett. 8, 3834 (2008) ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973) ADSCrossRefGoogle Scholar
  24. 24.
    R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, P.N. Prasad, Adv. Funct. Mater. 19, 853 (2009) CrossRefGoogle Scholar
  25. 25.
    A.A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, 1996) Google Scholar
  26. 26.
    A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J.P. Boilot, Chem. Mater. 14, 2264 (2002) CrossRefGoogle Scholar
  27. 27.
    V. Buissette, D. Giaume, T. Gacoin, J.P. Boilot, J. Mater. Chem. 16, 529 (2006) CrossRefGoogle Scholar
  28. 28.
    J.W. Stouwdam, M. Raudsepp, F.C.J.M. van Veggel, Langmuir 21, 7003 (2005) CrossRefGoogle Scholar
  29. 29.
    M. Wang, W. Hou, C.C. Mi, W.X. Wang, Z.R. Xu, H.H. Teng, C.B. Mao, S.K. Xu, Anal. Chem. 81, 8783 (2009) CrossRefGoogle Scholar
  30. 30.
    F. Vetrone, R. Naccache, A. Zamarron, A.J. de la Fuente, F. Sanz-Rodriguez, L.M. Maestro, E.M. Rodriguez, D. Jaque, J.G. Sole, J.A. Capobianco, ACS Nano 4, 3254 (2010) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • A. Bednarkiewicz
    • 1
  • D. Wawrzynczyk
    • 2
  • M. Nyk
    • 2
  • W. Strek
    • 1
  1. 1.Institute of Low Temperature and Structure ResearchPANWroclawPoland
  2. 2.Institute of Physical and Theoretical Chemistry, Department of ChemistryWrocław University of TechnologyWroclawPoland

Personalised recommendations