Applied Physics B

, Volume 103, Issue 3, pp 609–613 | Cite as

High-power passively mode-locked tapered InAs/GaAs quantum-dot lasers

  • D. I. Nikitichev
  • Y. Ding
  • M. Ruiz
  • M. Calligaro
  • N. Michel
  • M. Krakowski
  • I. Krestnikov
  • D. Livshits
  • M. A. Cataluna
  • E. U. Rafailov
Article

Abstract

We report picosecond pulse generation with high peak power in the range of 3.6 W from monolithic passively mode-locked tapered quantum-dot laser diodes, exhibiting low divergence and good beam quality. These results were achieved using a gain-guided tapered laser geometry. The generation of picosecond pulses with high average power up to 209 mW directly from such tapered lasers is also demonstrated, corresponding to 14.2 pJ pulse energy (14.65 GHz repetition rate). A comparison between the mode-locking performance of these tapered lasers incorporating either five or ten layers of InAs/GaAs self-organized quantum dots in their active layer is also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Diehl (ed.), High-Power Diode Lasers: Fundamentals, Technology, Applications. Topics in Applied Physics, vol. 78 (Springer, Berlin, 2000) Google Scholar
  2. 2.
    N. Michel, M. Ruiz, M. Calligaro, Y. Robert, M. Lecomte, O. Parillaud, M. Krakowski, I. Esquivias, H. Odriozola, J.M.G. Tijero, C.H. Kwok, R.V. Penty, I.H. White, Proc. SPIE 7616, 76161-F1 (2010) Google Scholar
  3. 3.
    K. Paschke, B. Sumpf, F. Dittmar, G. Erbert, R. Staske, H. Wenzel, G. Trankle, IEEE J. Sel. Top. Quantum Electron. 11, 1223 (2005) CrossRefGoogle Scholar
  4. 4.
    B. Sumpf, K.H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, G. Trankle, IEEE J. Sel. Top. Quantum Electron. 15, 1009 (2009) CrossRefGoogle Scholar
  5. 5.
    M.T. Kelemen, J. Weber, G. Kaufel, G. Bihlmann, R. Moritz, M. Mikulla, G. Weimann, Electron. Lett. 41, 1011 (2005) CrossRefGoogle Scholar
  6. 6.
    K. Kim, S. Lee, P.J. Delfyett, Opt. Express 13, 4600 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    E. Innerhofer, T. Sudmeyer, F. Brunner, R. Paschotta, U. Keller, Laser Phys. Lett. 1, 82 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    A. Mar, R. Helkey, W.X. Zou, D.B. Young, J.E. Bowers, Appl. Phys. Lett. 66, 3558 (1995) ADSCrossRefGoogle Scholar
  9. 9.
    F.R. Ahmad, F. Rana, IEEE Photonics Technol. Lett. 20, 190 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    E.U. Rafailov, M.A. Cataluna, W. Sibbett, Nat. Photonics 1, 395 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    W. Kaiser, J.P. Reithmaier, A. Forchel, H. Odriozola, I. Esquivias, Appl. Phys. Lett. 91, 051126 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    M.G. Thompson, A. Rae, M. Xia, R.V. Penty, I.H. White, IEEE J. Sel. Top. Quantum Electron. 15, 661 (2009) CrossRefGoogle Scholar
  13. 13.
    K. Petermann, IEEE J. Quantum Electron. 15, 566 (1979) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    G.P. Agrawal, J. Opt. Soc. Am. B 1, 406 (1984) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. I. Nikitichev
    • 1
  • Y. Ding
    • 1
  • M. Ruiz
    • 2
  • M. Calligaro
    • 2
  • N. Michel
    • 2
  • M. Krakowski
    • 2
  • I. Krestnikov
    • 3
  • D. Livshits
    • 3
  • M. A. Cataluna
    • 1
  • E. U. Rafailov
    • 1
  1. 1.School of Engineering, Physics and MathematicsUniversity of DundeeDundeeUK
  2. 2.Alcatel Thales III-V LabPalaiseauFrance
  3. 3.Innolume GmbHDortmundGermany

Personalised recommendations