Applied Physics B

, Volume 101, Issue 4, pp 705–721 | Cite as

A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms



We propose a compact atomic clock that uses all-optical interrogation of ultra-cold Rb atoms that are magnetically trapped near the surface of an atom microchip. The interrogation scheme, which combines electromagnetically induced transparency with Ramsey’s method of separated oscillatory fields, can achieve an atomic shot-noise-level performance better than \(10^{-13}/\sqrt{\tau}\) for 106 atoms. A two-color Mach–Zehnder interferometer can detect a 100-pW probe beam at the optical shot-noise level using conventional photodetectors. This measurement scheme is nondestructive and therefore can be used to increase the operational duty cycle by reusing the trapped atoms for multiple clock cycles. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2×10−14. An overview of the apparatus is presented with estimates of cycle time and power consumption.


Rabi Frequency Atomic Clock Coupling Beam Zehnder Interferometer Light Shift 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Könemann, W. Brinkmann, E. Göklü, C. Lämmerzahl, H. Dittus, T. van Zoest, E. Rasel, W. Ertmer, W. Lewoczko-Adamczyk, M. Schiemangk, A. Peters, A. Vogel, G. Johannsen, S. Wildfang, K. Bongs, K. Sengstock, E. Kajari, G. Nandi, R. Walser, W. Schleich, Appl. Phys. B 89, 431 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    A. Vogel, M. Schmidt, K. Sengstock, K. Bongs, W. Lewoczko, T. Schuldt, A. Peters, T.V. Zoest, W. Ertmer, E. Rasel, T. Steinmetz, J. Reichel, T. Könemann, W. Brinkmann, E. Göklü, C. Lämmerzahl, H. Dittus, G. Nandi, W. Schleich, R. Walser, Appl. Phys. B 84, 663 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    N. Yu, J. Kohel, J. Kellogg, L. Maleki, Appl. Phys. B 84, 647 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Phys. Rev. A 65, 033608 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    G. Stern, B. Battelier, R. Geiger, G. Varoquaux, A. Villing, F. Moron, O. Carraz, N. Zahzam, Y. Bidel, W. Chaibi, F.P.D. Santos, A. Bresson, A. Landragin, P. Bouyer, Eur. J. Phys. D 53, 353 (2009) ADSGoogle Scholar
  6. 6.
    P. Treutlein, P. Hommelhoff, T. Steinmetz, T.W. Hänsch, J. Reichel, Phys. Rev. Lett. 92, 203005 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossman, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    Y.-J. Wang, D.Z. Anderson, V.M. Bright, E.A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R.A. Saravanan, S.R. Segal, S. Wu, Phys. Rev. Lett. 94, 090405 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    C. Lacroute, F. Reinhard, F. Ramirez-Martinez, C. Deutsch, T. Schneider, J. Reichel, P. Rosenbusch, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 106 (2010) CrossRefGoogle Scholar
  11. 11.
    D.M. Farkas, K.M. Hudek, E.A. Salim, S.R. Segal, M.B. Squires, D.Z. Anderson, Appl. Phys. Lett. 96, 093102 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Knappe, V. Shah, P.D.D. Schwindt, L. Hollberg, J. Kitching, L. Liew, J. Moreland, Appl. Phys. Lett. 85, 1460 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, M. Delaney, IEEE Trans. Instrum. Meas. 54, 2531 (2005) CrossRefGoogle Scholar
  14. 14.
    J. Vanier, Appl. Phys. B 81, 421 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    V. Shah, P.D.D. Schwindt, V. Gerginov, S. Knappe, L. Hollberg, J. Kitching, in IEEE Int. Frequency Control Symp. (2006), pp. 699–701 CrossRefGoogle Scholar
  16. 16.
    M. Zhu L.S. Cutler, in 32nd Annu. Precise Time and Time Interval Meet. (2000), p.311 Google Scholar
  17. 17.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Ludlow, T. Zelevinsky, G.K. Campbell, S. Blatt, M.M. Boyd, M.H.G. de Miranda, M.J. Martin, J.W. Thomsen, S.M. Foreman, J. Ye, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, Y.L. Coq, Z.W. Barber, N. Poli, N.D. Lemke, K.M. Beck, C.W. Oates, Science 319, 1805 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    C. Deutsch, F. Ramirez-Martinez, C. Lacroûte, F. Reinhard, T. Schneider, J.-N. Fuchs, F. Piéchon, F. Laloë, J. Reichel, P. Rosenbusch, Phys. Rev. Lett. 105, 020401 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Harber, H.J. Lewandowski, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 66, 053616 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    T. Zanon-Willette, A.D. Ludlow, S. Blatt, M.M. Boyd, E. Arimondo, J. Ye, Phys. Rev. Lett. 97, 233001 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, A. Clairon, Phys. Rev. Lett. 94, 193002 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    J.E. Thomas, P.R. Hemmer, S. Ezekiel, C.C. Leiby, R.H. Picard, C.R. Willis, Phys. Rev. Lett. 48, 867 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    P.R. Hemmer, M.S. Shahriar, H. Lamela-Rivera, S.P. Smith, B.E. Bernacki, S. Ezekiel, J. Opt. Soc. Am. B 10, 1326 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Shahriar, P.R. Hemmer, D.P. Katz, A. Lee, M.G. Prentiss, Phys. Rev. A 55, 2272 (1997) ADSCrossRefGoogle Scholar
  26. 26.
    J. Lodewyck, P.G. Westergaard, P. Lemonde, Phys. Rev. A 79, 061401 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    P.J. Windpassinger, D. Oblak, P.G. Petrov, M. Kubasik, M. Saffman, C.L. Garrido Alzar, J. Appel, J.H. Müller, N. Kjærgaard, E.S. Polzik, Phys. Rev. Lett. 100, 103601 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    M. Saffman, D. Oblak, J. Appel, E.S. Polzik, Phys. Rev. A 79, 023831 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    N. Lundblad, M. Schlosser, J.V. Porto, Phys. Rev. A 81, 031611(R) (2010) ADSGoogle Scholar
  30. 30.
    S. Guerandel, T. Zanon, N. Castagna, F. Dahes, E. de Clercq, N. Dimarcq, A. Clairon, IEEE Trans. Instrum. Meas. 56, 383 (2007) CrossRefGoogle Scholar
  31. 31.
    G. Santarelli, C. Audion, A. Makdissi, P. Laurent, G.J. Dick, A. Clairon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 (1998) CrossRefGoogle Scholar
  32. 32.
    P. Rosenbusch, Appl. Phys. B 95, 227 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    D.A. Steck, Rubidium 87 D line data (2009) Google Scholar
  34. 34.
    J.B. Encinas, Phase Locked Loops (Chapman & Hall, London, 1993) CrossRefGoogle Scholar
  35. 35.
    G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A.G. Mann, S. Chang, A.N. Luiten, C. Salomon, Phys. Rev. Lett. 82, 4619 (1999) ADSCrossRefGoogle Scholar
  36. 36.
    L. Hollberg, C.W. Oates, E.A. Curtis, E.N. Ivanov, S.A. Diddams, T. Udem, H.G. Robinson, J.C. Bergquist, R.J. Rafac, W.M. Itano, R.E. Drullinger, D.J. Wineland, IEEE J. Quantum Electron. 37, 1502 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    K. Gibble, Phys. Rev. Lett. 103, 113202 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    E. van Kempen, S. Kokkelmans, D.J. Heinzen, B.J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    P. Rosenbusch, S. Ghezali, V.A. Dzuba, V.V. Flambaum, K. Beloy, A. Derevianko, Phys. Rev. A 79, 013404 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    K. Beloy, A. Derevianko, V.A. Dzuba, V.V. Flambaum, Phys. Rev. Lett. 102, 120801 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    V.V. Flambaum, V.A. Dzuba, A. Derevianko, Phys. Rev. Lett. 101, 220801 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    I. Barb, R. Gerritsma, Y. Xing, J. Goedkoop, R. Spreeuw, Eur. J. Phys. D 35, 75 (2005) ADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.JILAUniversity of Colorado, and NISTBoulderUSA
  2. 2.Department of PhysicsWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations