Applied Physics B

, Volume 102, Issue 2, pp 417–423 | Cite as

Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers

  • B. H. Lee
  • E. C. Wood
  • M. S. Zahniser
  • J. B. McManus
  • D. D. Nelson
  • S. C. Herndon
  • G. W. Santoni
  • S. C. Wofsy
  • J. W. Munger
Article

Abstract

Nitrous acid (HONO) is important as a significant source of hydroxyl radical (OH) in the troposphere and as a potent indoor air pollutant. It is thought to be generated in both environments via heterogeneous reactions involving nitrogen dioxide (NO2). In order to enable fast-response HONO detection suitable for eddy-covariance flux measurements and to provide a direct method that avoids interferences associated with derivatization, we have developed a 2-channel tunable infrared laser differential absorption spectrometer (TILDAS) capable of simultaneous high-frequency measurements of HONO and NO2. Beams from two mid-infrared continuous-wave mode quantum cascade lasers (cw-QCLs) traverse separate 210 m paths through a multi-pass astigmatic sampling cell at reduced pressure for the direct detection of HONO (1660 cm−1) and NO2 (1604 cm−1). The resulting one-second detection limits (S/N=3) are 300 and 30 ppt (pmol/mol) for HONO and NO2, respectively. Our HONO quantification is based on revised line-strengths and peak positions for cis-HONO in the 6-micron spectral region that were derived from laboratory measurements. An essential component of ambient HONO measurements is the inlet system and we demonstrate that heated surfaces and reduced pressure minimize sampling artifacts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alicke et al., J. Geophys. Res., Atmos. 108 (2003) Google Scholar
  2. 2.
    W. Liao et al., Geophys. Res. Lett. 33 (2006) Google Scholar
  3. 3.
    X.L. Zhou et al., J. Geophys. Res., Atmos. 112 (2007) Google Scholar
  4. 4.
    S.S. Park et al., Atmos. Environ. 42, 6586 (2008) CrossRefGoogle Scholar
  5. 5.
    M. Sleiman et al., Proc. Natl. Acad. Sci. USA 107, 6576 (2010) CrossRefADSGoogle Scholar
  6. 6.
    J. Kleffmann et al., Atmos. Environ. 40, 3640 (2006) CrossRefGoogle Scholar
  7. 7.
    J.E. Dibb et al., Atmos. Environ. 38, 5399 (2004) CrossRefGoogle Scholar
  8. 8.
    J. Heland et al., Environ. Sci. Technol. 35, 3207 (2001) CrossRefGoogle Scholar
  9. 9.
    X.L. Zhou et al., Environ. Sci. Technol. 33, 3672 (1999) CrossRefGoogle Scholar
  10. 10.
    J. Kleffmann, P. Wiesen, Atmos. Chem. Phys. 8, 6813 (2008) CrossRefADSGoogle Scholar
  11. 11.
    R. Kurtenbach et al., Atmos. Environ. 35, 3385 (2001) CrossRefGoogle Scholar
  12. 12.
    U. Platt et al., Nature 285, 312 (1980) CrossRefADSGoogle Scholar
  13. 13.
    Y.Q. Li, J.J. Schwab, K.L. Demerjian, Geophys. Res. Lett. 35 (2008) Google Scholar
  14. 14.
    C.L. Schiller et al., J. Atmos. Chem. 40, 275 (2001) CrossRefGoogle Scholar
  15. 15.
    C.V. Horii et al., J. Geophys. Res., Atmos. 109 (2004) Google Scholar
  16. 16.
    C.V. Horii et al., Agric. For. Meteorol. 133, 210 (2005) CrossRefGoogle Scholar
  17. 17.
    C.V. Horii et al., Proc. SPIE 3758, 152 (1999) CrossRefADSGoogle Scholar
  18. 18.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005) CrossRefADSGoogle Scholar
  19. 19.
    J.B. McManus, Appl. Opt. 46, 472 (2007) CrossRefADSGoogle Scholar
  20. 20.
    J.B. McManus et al., Appl. Phys. B, Lasers Opt. 85, 235 (2006) CrossRefADSGoogle Scholar
  21. 21.
    D.D. Nelson et al., Appl. Phys. B, Lasers Opt. 75, 343 (2002) CrossRefADSGoogle Scholar
  22. 22.
    M.S. Zahniser et al., Proc. SPIE 7222, 72220H (2009) Google Scholar
  23. 23.
    A. Febo et al., Environ. Sci. Technol. 29, 2390 (1995) CrossRefGoogle Scholar
  24. 24.
    A. Bongartz et al., J. Phys. Chem. 95, 1076 (1991) CrossRefGoogle Scholar
  25. 25.
    L.H. Jones, R.M. Badger, G.E. Moore, J. Chem. Phys. 19, 1599 (1951) CrossRefADSGoogle Scholar
  26. 26.
    G.E. Mcgraw, D.L. Bernitt, I.C. Hisatsun, J. Chem. Phys. 45, 1392 (1966) CrossRefADSGoogle Scholar
  27. 27.
    V. Sironneau et al., J. Mol. Spectrosc. 259, 100 (2010) CrossRefADSGoogle Scholar
  28. 28.
    R. Varma, R.F. Curl, J. Phys. Chem. 80, 402 (1976) CrossRefGoogle Scholar
  29. 29.
    K.H. Becker et al., J. Phys. Chem. 100, 14984 (1996) CrossRefGoogle Scholar
  30. 30.
    W.L. Chameides, J. Geophys. Res., Atmos. 89, 4739 (1984) CrossRefADSGoogle Scholar
  31. 31.
    J. Goretski, O.C. Zafiriou, T.C. Hollocher, J. Biol. Chem. 265, 11535 (1990) Google Scholar
  32. 32.
    J. Lelieveld, P.J. Crutzen, J. Atmos. Chem. 12, 229 (1991) CrossRefGoogle Scholar
  33. 33.
    X.L. Zhou et al., Geophys. Res. Lett. 29 (2002) Google Scholar
  34. 34.
    B.W. Loo, C.P. Cork, Aerosol Sci. Technol. 9, 167 (1988) CrossRefGoogle Scholar
  35. 35.
    V.A. Marple, C.M. Chien, Environ. Sci. Technol. 14, 976 (1980) CrossRefGoogle Scholar
  36. 36.
    R.A. Ellis et al., Atmos. Meas. Tech. 3, 397 (2010) CrossRefGoogle Scholar
  37. 37.
    S.C. Herndon et al., J. Geophys. Res., Atmos. 112 (2007) Google Scholar
  38. 38.
    J.B. McManus et al., Opt. Eng. 49 (2010) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. H. Lee
    • 1
  • E. C. Wood
    • 2
  • M. S. Zahniser
    • 2
  • J. B. McManus
    • 2
  • D. D. Nelson
    • 2
  • S. C. Herndon
    • 2
  • G. W. Santoni
    • 1
  • S. C. Wofsy
    • 1
  • J. W. Munger
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Center for Atmospheric and Environmental ChemistryAerodyne Research, Inc.BillericaUSA

Personalised recommendations