Applied Physics B

, Volume 102, Issue 1, pp 185–195 | Cite as

CALIPSO validation using ground-based lidar in Hefei (31.9°N, 117.2°E), China

Article

Abstract

Validation measurement in collaboration with existing lidar sites is a very important part of CALIPSO validation program, lidar site in Hefei is invited to collaborate in the CALIPSO validation program. In this paper, ground-based lidar measurements in Hefei performed in coincidence with CALIPSO overpass are presented, attenuated backscatter profiles at 532 nm and 1064 nm, as well as volume depolarization ratio profile at 532 nm measured by CALIPSO are compared with the ones measured by ground-based lidar. The comparisons indicate that CALIPSO measurements are consistent with the ground-based lidar measurements. However, due to the fact that horizontal distributions of aerosols in the lower troposphere and clouds are in most cases inhomogeneous, there are some differences between two lidar measurements in the boundary layer and clouds. The aerosol layer below the semi-transparent thick cloud can be detected by the 532 nm channel of CALIPSO in daytime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Winker, J. Pelon, M.P. McCormick, Proc. SPIE 4893, 1 (2003) CrossRefGoogle Scholar
  2. 2.
    K.A. Kovacs, A. Omar, M.P. McCormick, C.R. Trepte, D.M. Winker, A. Garnier, J. Pelon, in ARM Twelfth Science Team Meeting Proceeding, vol. 1 (2002) Google Scholar
  3. 3.
    T.A. Kovacs, M.P. McCormick, Cloud-Aerosol Lidar and Infrared Pathfinder Satelite Observations (CALIPSO) quid pro quo validation plan, October, 2005. Available on line at http://calipsovalidation.hamptonu.edu
  4. 4.
    R.E. Mamouri, V. Amiridis, A. Papayannis, E. Giannakaki, G. Tsaknakis, D.S. Balis, Meas. Tech. 2, 513 (2009) CrossRefGoogle Scholar
  5. 5.
    L. Mona, G. Pappalardo, A. Amodeo, G. D’Amico, F. Madonna, A. Boselli, A. Giunta, F. Russo, V. Cuomo, Atmos. Chem. Phys. 9, 7213 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A. Ansmann, Appl. Opt. 45, 3367 (1979) ADSCrossRefGoogle Scholar
  7. 7.
    S.-W. Kim, S. Berthier, P. Chazette, J.-C. Raut, F. Dulac, S.-C. Yoon, Atmos. Chem. Phys. 8, 3705 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Tao, M.P. McCormick, D. Wu, Appl. Phys. B 91, 639 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, T. Takamura, J. Geophys. Res. 107, 4252 (2002) CrossRefGoogle Scholar
  10. 10.
    J. Zhou, H. Hu, Z. Gong, Chin. Sci. Bull. 38, 811 (1993) Google Scholar
  11. 11.
    J. Zhou, Z. Wang, J. Han, Acta Meteorol. Sin. 10, 81 (1996) Google Scholar
  12. 12.
    H. Hu, J. Zhou, Y. Wu, Proc. SPIE 3504, 184 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    B. Liu, Z. Zhong, J. Zhou, J. Opt. A, Pure Appl. Opt. 9, 828 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    R. Chi, D. Wu, B. Liu, J. Zhou, Spectrosc. Spectr. Anal. 29, 1468 (2009) Google Scholar
  15. 15.
    Z. Wang, R. Chi, B. Liu, J. Zhou, Chin. Opt. Lett. 6, 235 (2008) CrossRefGoogle Scholar
  16. 16.
    Z. Wang, D. Liu, J. Zhou, Y. Wang, Opt. Rev. 16, 566 (2009) CrossRefGoogle Scholar
  17. 17.
    F.G. Fernald, Appl. Opt. 23, 652 (1984) ADSCrossRefGoogle Scholar
  18. 18.
    P.B. Russell, T.J. Swissler, M.P. McCormick, Appl. Opt. 18, 3783 (1979) ADSGoogle Scholar
  19. 19.
    D.N. Whiteman, S.H. Melfi, R.A. Ferrare, Appl. Opt. 31, 3068 (1992) ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Welton, J.R. Campbell, J. Atmos. Oceanic Technol. 19, 2089 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    K. Sassen, Gregory C. Dodd, Appl. Opt. 21, 3162 (1982) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina

Personalised recommendations