Advertisement

Applied Physics B

, Volume 101, Issue 3, pp 601–609 | Cite as

Numerical investigations of a multi-walled carbon nanotube-based multi-segmented optical antenna

Article

Abstract

Motivated by the fabrication potential of multi-walled carbon nanotube structures, we numerically investigated a paired structure consisting of two metallic spheres each grown on one end of a multi-walled nanotube. The paired two-segmented structure is capable to convert free-space radiation into an intense near-field, and, hence, acting as an optical antenna. Vice versa the presence of the two nanotubes enable a current source at the antenna feed to more efficiently energy into the radiation modes, resulting e.g. in correspondingly altered luminescence lifetimes when an excited single molecule is placed in the feed point. Furthermore, the structure represents a mean to localize light on a sub-wavelength scale within different materials, which is interesting in the context of a fabrication technology for integrated nanophotonic components with different material combinations. The optical properties of the nano-antenna are analyzed by means of numerical simulations using the finite element method. Our investigations have revealed that the field enhancement, the resonances, and the radiation patterns can be easily tuned since all these quantities strongly depend on the size of the nanotubes and the metallic spheres, as well as on their material properties The structure we propose here carries a great potential for bio-sensing, for tip-enhanced spectroscopy applications, and for interfacing integrated photonic nano circuits.

Keywords

Radiation Pattern Resonance Wavelength Antenna Structure Paired Structure Optical Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005) CrossRefADSGoogle Scholar
  2. 2.
    T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. Van Hulst, Nat. Photon. 2, 234 (2008) CrossRefGoogle Scholar
  3. 3.
    J.J. Greffet, Science 308, 1561 (2005) CrossRefGoogle Scholar
  4. 4.
    L. Novotny, Phys. Rev. Lett. 98, 266802 (2007) CrossRefADSGoogle Scholar
  5. 5.
    J. Aizpurua, Phys. Rev. B 71, 235420 (2005) CrossRefADSGoogle Scholar
  6. 6.
    A. Sundaramurthy, Nano Lett. 6, 355 (2006) CrossRefADSGoogle Scholar
  7. 7.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003) CrossRefADSGoogle Scholar
  8. 8.
    K. Kempa, J. Rybczynski, Z.P. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z.F. Ren, Adv. Mater. 19, 421 (2007) CrossRefGoogle Scholar
  9. 9.
    J. Rybczynski, K. Kempa, Y. Wang, Z.F. Ren, J.B. Carlson, B.R. Kimball, G. Benham, Appl. Phys. Lett. 88, 203122 (2006) CrossRefADSGoogle Scholar
  10. 10.
    P. Avouris, Z.H. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007) CrossRefADSGoogle Scholar
  11. 11.
    L.X. Dong, X.Y. Tao, L. Zhang, B.J. Nelson, X.B. Zhang, Nano Lett. 7, 58 (2007) CrossRefADSGoogle Scholar
  12. 12.
    K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003) CrossRefADSGoogle Scholar
  13. 13.
    R. Kappler, D. Erni, X. Cui, L. Novotny, J. Comput. Theor. Nanosci. 4, 681 (2007) Google Scholar
  14. 14.
    L. Muskens, V. Giannini, J.A. Sanchez-Gil, J. Gomez Rivas, Opt. Express 15, 17736 (2007) CrossRefADSGoogle Scholar
  15. 15.
    D. Baumann, C. Fumeaux, C. Hafner, E.P. Li, Opt. Express 17, 15186 (2009) CrossRefADSGoogle Scholar
  16. 16.
    X. Cui, D. Erni, J. Comput. Theor. Nanosci. 7, 1610 (2010) CrossRefGoogle Scholar
  17. 17.
    J. Hao, G.W. Hanson, Phys. Rev. B 75, 165416 (2007) CrossRefADSGoogle Scholar
  18. 18.
    G.Y. Slepyan, S.A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A.V. Gusakov, Phys. Rev. B 60, 17136 (1999) CrossRefADSGoogle Scholar
  19. 19.
    F.J. Garcia-Vadal, J.M. Pitrarke, J.B. Pendry, Phys. Rev. Lett. 78, 095504 (2005) Google Scholar
  20. 20.
    C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 2005) Google Scholar
  21. 21.
    T.H. Taminiau, F.B. Segerink, N.F. Van Hulst, IEEE Trans. Antennas Propag. 55, 3010 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Romero, J. Aizpurua, G.W. Bryant, F. Javier Garcia de Abajo, Opt. Express 15, 9988 (2006) CrossRefGoogle Scholar
  23. 23.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) CrossRefADSGoogle Scholar
  24. 24.
    M. Danckwerts, L. Novotny, Phys. Rev. Lett. 98, 026104 (2007) CrossRefADSGoogle Scholar
  25. 25.
    E. Peter, P. Senellart, D. Martron, A. Lemaitre, J. Hours, J.M. Gerard, J. Bloch, Phys. Rev. Lett. 95, 067401 (2005) CrossRefADSGoogle Scholar
  26. 26.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4, 957 (2004) CrossRefADSGoogle Scholar
  27. 27.
    G. Chen, J. Wu, Q. Lu, H.R. Gutierrez, Q. Xiong, M.E. Pellen, J.S. Petko, D.H. Werner, P.C. Eklund, Nano Lett. 8, 1341 (2008) CrossRefADSGoogle Scholar
  28. 28.
    S. Kuehn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • X. Cui
    • 1
    • 2
  • L. Dong
    • 3
  • W. Zhang
    • 4
  • W. Wu
    • 1
  • Y. Tang
    • 1
  • D. Erni
    • 2
  1. 1.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina
  2. 2.General and Theoretical Electrical Engineering (ATE), Faculty of EngineeringUniversity of Duisburg-Essen, and CeNIDE—Center for Nanointegration Duisburg-EssenDuisburgGermany
  3. 3.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  4. 4.Nanophotonics and Metrology LaboratoryEPFL LausanneLausanneSwitzerland

Personalised recommendations