Advertisement

Applied Physics B

, Volume 102, Issue 4, pp 789–794 | Cite as

Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power

  • T. SchwarzbäckEmail author
  • M. Eichfelder
  • W.-M. Schulz
  • R. Roßbach
  • M. Jetter
  • P. Michler
Article

Abstract

We present a vertical external cavity surface-emitting laser system based on a multi-quantum-well structure with 20 compressively strained GaInP quantum wells for an operation wavelength of around 665 nm with a monolithic integrated distributed Bragg reflector. With the help of an intra-cavity diamond heatspreader the laser operates in continuous-wave mode. Operation with a TEM00 Gaussian beam profile and a beam propagation factor of M 2≤1.05 is shown as well as a high resolution spectrum of the laser line, which shows the etalon effect of the diamond. The laser can be operated at a maximum output power exceeding 1.2 W with a slope efficiency of η diff=18%. At maximum output power the wavelength of the laser resonance is at 670 nm, which is shortest reported until now at powers exceeding 1 W. By rotating a birefringent filter in an extended folded cavity arrangement a wavelength tuning of 21 nm was attained.

Keywords

Output Power Gaussian Beam Maximum Output Power Output Coupler Wavelength Tuning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, Technol. Lett. 9, 1063 (1997) CrossRefGoogle Scholar
  2. 2.
    S. Calvez, J.E. Hastie, M. Guina, O.G. Okhotnikov, M.D. Dawson, Laser Photonics Rev. 3, 407 (2009) CrossRefGoogle Scholar
  3. 3.
    N. Schulz, J.-M. Hopkins, M. Rattunde, D. Burns, J. Wagner, Laser Photonics Rev. 2, 160 (2008) CrossRefGoogle Scholar
  4. 4.
    S.-S. Beyertt, T. Kübler, U. Brauch, A. Giesen, E. Gerster, F. Rinaldi, P. Unger, OSA Trends Opt. Photonics 98, 294 (2005) Google Scholar
  5. 5.
    T.D. Germann, A. Strittmatter, J. Pohl, U.W. Pohl, D. Bimberg, J. Rautiainen, M. Guina, O.G. Okhotnikov, Appl. Phys. Lett. 93, 051104 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Schlosser, J.E. Hastie, S. Calvez, A.B. Krysa, M.D. Dawson, Opt. Express 17, 21782 (2009) CrossRefGoogle Scholar
  7. 7.
    M.E. Kurdi, S. Bouchoule, A. Bousseksou, I. Sagnes, A. Plais, M. Strassner, C. Symonds, A. Garnache, J. Jacquet, Electron. Lett. 40, 671 (2004) CrossRefGoogle Scholar
  8. 8.
    A. Bousseksou, S. Bouchoule, M. Kurdi, M. Strassner, I. Sagnes, P. Crozat, J. Jacquet, Opt. Quantum Electron. 38, 1269 (2006) CrossRefGoogle Scholar
  9. 9.
    P. Kreuter, B. Witzigmann, D.J.H.C. Maas, Y. Barbarin, T. Südmeyer, U. Keller, Appl. Phys. B, Lasers Opt. 91, 257 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    U. Keller, T. Südmeyer, Opt. Photonik 4, 39 (2008) CrossRefGoogle Scholar
  11. 11.
    O. Casel, D. Woll, M.A. Tremont, H. Fuchs, R. Wallenstein, E. Gerster, P. Unger, M. Zorn, M. Weyers, Appl. Phys. B, Lasers Opt. 81, 443 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    M.I. Müller, N. Linder, C. Karnutsch, W. Schmid, K.P. Streubel, J. Luft, S.-S. Beyertt, A. Giesen, G.H. Döhler, Proc. SPIE 4649, 465 (2002) Google Scholar
  13. 13.
    M.I. Müller, C. Karnutsch, J. Luft, W. Schmid, K. Streubel, N. Linder, S.-S. Beyertt, U. Brauch, A. Giesen, G.H. Döhler, in 29th International Symposium on Compound Semiconductors, vol. 174, ed. by M. Ilegems, G. Weimann, J. Wagner (IOP, Lausanne, 2003), p. 427 Google Scholar
  14. 14.
    J.E. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, M. Pessa, Opt. Express 13, 77 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    L.G. Morton, J.E. Hastie, M.D. Dawson, A.B. Krysa, J.S. Roberts, in Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference (CLEO/QELS) (2006), p. 1 Google Scholar
  16. 16.
    J.E. Hastie, L.G. Morton, A.J. Kemp, M.D. Dawson, A.B. Krysa, J.S. Roberts, Appl. Phys. Lett. 89, 061114 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    M.Y.A. Raja, S.R.J. Brueck, M. Osinski, C.F. Schaus, J.G. McInerney, T.M. Brennan, B.E. Hammons, IEEE J. Quantum Electron. 25, 1500 (1989) ADSCrossRefGoogle Scholar
  18. 18.
    S.W. Corzine, R.S. Geels, J.W. Scott, R.-H. Yan, L.A. Coldren, IEEE J. Quantum Electron. 25, 1513 (1989) ADSCrossRefGoogle Scholar
  19. 19.
    Element Six Ltd., http://www.e6cvd.com
  20. 20.
    Z.L. Liau, Appl. Phys. Lett. 77, 651 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    P. Savolainen, M. Toivonen, M. Pessa, M. Corvini, M. Jansen, R.F. Nabiev, Semicond. Sci. Technol. 14, 425 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    J.-R. Dong, J.-H. Teng, S.-J. Chua, B.-C. Foo, Y.-J. Wang, L.-W. Zhang, H.-R. Yuan, S. Yuan, J. Appl. Phys. 95, 5252 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    HighFinesse GmbH, http://www.highfinesse.com
  24. 24.
    M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, IEEE J. Sel. Top. Quantum Electron. 5, 561 (1999) CrossRefGoogle Scholar
  25. 25.
    A.E. Siegman, in Solid State Lasers: New Developments and Applications, ed. by M. Inguscio, R. Wallenstein (Plenum, New York, 1993) Google Scholar
  26. 26.
    M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roßbach, M. Jetter, P. Michler, Appl. Phys. Lett. 95, 131107 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. Schwarzbäck
    • 1
    Email author
  • M. Eichfelder
    • 1
  • W.-M. Schulz
    • 1
  • R. Roßbach
    • 1
  • M. Jetter
    • 1
  • P. Michler
    • 1
  1. 1.Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPEUniversity of StuttgartStuttgartGermany

Personalised recommendations