Applied Physics B

, Volume 100, Issue 4, pp 695–698

A structure for enhanced terahertz emission from a photoexcited semiconductor surface

  • M. I. Bakunov
  • R. V. Mikhaylovskiy
  • M. Tani
  • C. T. Que
Rapid communication

Abstract

A structure that can provide enhancement of terahertz emission from a semiconductor surface excited with femtosecond laser pulses is proposed. The structure consists of a semiconductor layer on a Si substrate with metal coating on the upper surface of the layer and a Si lens attached to the bottom of the substrate. The semiconductor is excited through a hole in the coating and emits terahertz radiation through the substrate lens. We demonstrate theoretically that the proposed structure can increase the terahertz yield by orders of magnitude as compared to the previously used schemes of terahertz emission from a semiconductor surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.-C. Zhang, B.B. Hu, J.T. Darrow, D.H. Auston, Appl. Phys. Lett. 56, 1011 (1990) CrossRefADSGoogle Scholar
  2. 2.
    X.-C. Zhang, D.H. Auston, J. Appl. Phys. 71, 326 (1992) CrossRefADSGoogle Scholar
  3. 3.
    Y. Hu, P. Huang, L. Guoa, X. Wang, C. Zhang, Phys. Lett. A 359, 728 (2006) MATHCrossRefADSGoogle Scholar
  4. 4.
    S. Yao-Chun, P.F. Taday, IEEE J. Sel. Top. Quantum Electron. 14, 407 (2008) CrossRefGoogle Scholar
  5. 5.
    T. Dekorsy, H. Auer, H.J. Bakker, H.G. Roskos, H. Kurz, Phys. Rev. B 53, 4005 (1996) CrossRefADSGoogle Scholar
  6. 6.
    M.B. Johnston, D.M. Whittaker, A. Dowd, A.G. Davies, E.H. Linfield, X. Li, D.A. Ritchie, Opt. Lett. 27, 1935 (2002) CrossRefADSGoogle Scholar
  7. 7.
    X.-C. Zhang, Y. Jin, T.D. Hewitt, T. Sangsiri, L.E. Kingsley, M. Weiner, Appl. Phys. Lett. 62, 2003 (1993) CrossRefADSGoogle Scholar
  8. 8.
    N. Sarukura, H. Ohtake, S. Izumida, Z. Liu, J. Appl. Phys. 84, 654 (1998) CrossRefADSGoogle Scholar
  9. 9.
    J. Shan, C. Weiss, R. Wallenstein, R. Beigang, T.F. Heinz, Opt. Lett. 26, 849 (2001) CrossRefADSGoogle Scholar
  10. 10.
    M.B. Johnston, D.M. Whittaker, A. Corchia, A.G. Davies, E.H. Linfield, Phys. Rev. B 65, 165301 (2002) CrossRefADSGoogle Scholar
  11. 11.
    M. Nakajima, K. Uchida, M. Tani, M. Hangyo, Appl. Phys. Lett. 85, 191 (2004) CrossRefADSGoogle Scholar
  12. 12.
    C.T. Que, T. Edamura, M. Nakajima, M. Tani, M. Hangyo, Jpn. J. Appl. Phys. 48, 010211 (2009) CrossRefADSGoogle Scholar
  13. 13.
    C.T. Que, T. Edamura, M. Nakajima, M. Tani, M. Hangyo, in Proc. 34th Int. Conf. Infrared, Millimeter, Terahertz Waves, T5E12, Busan, Korea, September 21–25, 2009 Google Scholar
  14. 14.
    B.B. Hu, J.T. Darrow, X.C. Zhang, D.H. Auston, P.R. Smith, Appl. Phys. Lett. 56, 886 (1990) CrossRefADSGoogle Scholar
  15. 15.
    D.R. Jackson, N.G. Alexopoulos, IEEE Trans. Antennas Propag. AP-33, 976 (1985) CrossRefADSGoogle Scholar
  16. 16.
    W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. B 67, 1615 (1977) CrossRefADSGoogle Scholar
  17. 17.
    D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, IEEE Trans. Microw. Theory Tech. 41, 1738 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. I. Bakunov
    • 1
  • R. V. Mikhaylovskiy
    • 2
  • M. Tani
    • 3
  • C. T. Que
    • 3
  1. 1.University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.University of ExeterExeterUK
  3. 3.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan

Personalised recommendations