Advertisement

Applied Physics B

, Volume 101, Issue 4, pp 817–823 | Cite as

High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings

  • D. Liu
  • Z. Kuang
  • W. PerrieEmail author
  • P. J. Scully
  • A. Baum
  • S. P. Edwardson
  • E. Fearon
  • G. Dearden
  • K. G. Watkins
Article

Abstract

Parallel femtosecond refractive index laser inscription of clinical grade poly(methyl methacrylate) (PMMA) at 775 nm, 170 fs pulselength is demonstrated with multiple low fluence beams generated with the aid of a spatial light modulator. Using optimised computer-generated holograms (CGHs), 16 diffracted near identical beams were focused simultaneously within bulk PMMA to create a series of 19 μm pitch, 5 mm×5 mm×1–4 mm thick volume phase gratings at high speed. First order diffraction efficiency rises with grating thickness in accord with diffraction theory, reaching 75% at the first Bragg angle (4 mm thick) with fabrication time around 1 hour. By carefully stitching filamentary modifications while eliminating effects such as pulse front tilt during inscription, gratings exhibit high uniformity, which has not been achieved previously using femtosecond inscription. Highly uniform modification is exhibited throughout the material consistent with the observed excellent angular selectivity and low background scatter and quantitative comparison with first order diffraction theory is satisfactory. The diffraction efficiency and hence refractive index profile shows a temporal behaviour related to the material response after exposure. Simultaneous 3D modification at different depths is also demonstrated, highlighting the potential of creating complex 3D integrated optical circuits at high speed through the application of CGHs.

Keywords

PMMA Spatial Light Modulator Optical Breakdown Refractive Index Modulation Fabrication Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Baum, P.J. Scully, W. Perrie, D. Jones, R. Issac, D.A. Jaroszynski, Opt. Lett. 33, 651 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    A. Baum, P.J. Scully, M. Basanta, C.L. Paul Thomas, P.R. Fielden, N.J. Goddard, W. Perrie, P.R. Chalker, Opt. Lett. 32, 190 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. Gong, J. Opt. A, Pure Appl. Opt. 6, 787 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Opt. Lett. 29, 1840 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    K. Yamasaki, S. Juodkazis, M. Watanabe, H.B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 76, 1000 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, K. Itoh, Opt. Express 14, 291 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, J. Nishii, Jpn. J. Appl. Phys. 45, L765 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, J. Appl. Phys. 98, 013517/1-5 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 031101 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 255, 2284 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Z. Kuang, W. Perrie, D. Liu, S. Edwardson, J. Cheng, G. Dearden, K. Watkins, Appl. Surf. Sci. 255, 9040 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I.V. Hertel, R. Stoian, Opt. Express 17, 3531 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    F. He, H. Sun, M. Huang, J. Xu, Y. Liao, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Appl. Phys. A 97, 853 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    J. Leach, G. Sinclair, P. Jordan, J. Courtial, M.J. Padgett, J. Cooper, Z. Laczik, Opt. Express 12, 220 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Curtis, C.H.J. Schmitz, J.P. Spatz, Opt. Lett. 30, 2086 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    P.G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, Appl. Phys. Lett. 90, 151120 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, H. Misawa, Appl. Phys. A 3, 561 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    W. Watanabe, Laser Phys. 19, 342 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969) Google Scholar
  20. 20.
    I.V. Ciapurin, L.B. Glebov, V.I. Smirnov, Proc. SPIE 5742, 183 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itch, H. Mochizuki, W. Watanabe, Appl. Phys. Lett. 94, 241122 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    A. Baum, P.J. Scully, W. Perrie, D. Liu, V. Lucarini, J. Opt. Soc. Am. B 27, 107 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. Liu
    • 1
  • Z. Kuang
    • 1
  • W. Perrie
    • 1
    Email author
  • P. J. Scully
    • 2
  • A. Baum
    • 2
  • S. P. Edwardson
    • 1
  • E. Fearon
    • 1
  • G. Dearden
    • 1
  • K. G. Watkins
    • 1
  1. 1.Laser Group, Department of EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Photon Science InstituteUniversity of ManchesterManchesterUK

Personalised recommendations