Applied Physics B

, Volume 101, Issue 1–2, pp 143–165 | Cite as

Superluminal spectral densities of ultra-relativistic electrons in intense electromagnetic wave fields

Article

Abstract

Superluminal radiation from electrons accelerated in electromagnetic waves is investigated. The radiation field is a Proca field with negative mass-square, minimally coupled to the electron current. The spectrum is continuous in the ultra-relativistic regime, where steepest-descent asymptotics can be used to evaluate the power coefficients. The time averaging of Lissajous orbits in polarized wave fields is discussed, and the tachyonic spectral densities of electrons orbiting in intense laser beams are derived. In the ultra-relativistic limit, realized by high injection energy or high field intensity, the spectral functions are evaluated in closed form in terms of Airy integrals. In contrast to electromagnetic radiation, there is a longitudinal polarization component, and oscillations emerge at high beam intensity in the longitudinal and transversal spectral slopes, generated by the negative mass-square of the tachyonic quanta. The thermal ultra-relativistic electron plasma of two active galactic nuclei is analyzed in this regard, based on TeV spectral maps obtained with imaging air Cherenkov detectors. Specifically, tachyonic cascade fits are performed to γ-ray flares of the TeV blazars RGB J0152+017 and 3C 66A, and the transversal and longitudinal radiation components are disentangled in the spectral maps. The curvature of the spectral slopes is shown to be intrinsic, caused by the Boltzmann factor of the electronic source plasma radiating the tachyonic cascades.

Keywords

Active Galactic Nucleus Lorentz Factor Electromagnetic Plane Wave Polarize Plane Wave Lissajous Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tanaka, Prog. Theor. Phys. 24, 171 (1960) CrossRefADSGoogle Scholar
  2. 2.
    R. Newton, Science 167, 1569 (1970) CrossRefADSGoogle Scholar
  3. 3.
    G. Feinberg, Sci. Am. 222(2), 69 (1970) CrossRefGoogle Scholar
  4. 4.
    C. Baltay, G. Feinberg, N. Yeh, R. Linsker, Phys. Rev. D 1, 759 (1970) CrossRefADSGoogle Scholar
  5. 5.
    R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    R. Tomaschitz, Physica A 335, 577 (2004) CrossRefADSGoogle Scholar
  7. 7.
    R. Tomaschitz, Eur. Phys. J. C 49, 815 (2007) CrossRefADSGoogle Scholar
  8. 8.
    A.V. Bessarab, A.A. Gorbunov, S.P. Martynenko, N.A. Prudkoy, IEEE Trans. Plasma Sci. 32, 1400 (2004) CrossRefADSGoogle Scholar
  9. 9.
    A.V. Bessarab, S.P. Martynenko, N.A. Prudkoi, A.V. Soldatov, V.A. Terekhin, Radiat. Phys. Chem. 75, 825 (2006) CrossRefADSGoogle Scholar
  10. 10.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003) CrossRefADSGoogle Scholar
  11. 11.
    T. Baba, Nat. Photon. 2, 465 (2008) CrossRefADSGoogle Scholar
  12. 12.
    G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Science 312, 895 (2006) CrossRefADSGoogle Scholar
  13. 13.
    L. Thévenaz, Nat. Photon. 2, 474 (2008) CrossRefADSGoogle Scholar
  14. 14.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rep. 427, 41 (2006) CrossRefADSGoogle Scholar
  16. 16.
    G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006) CrossRefADSGoogle Scholar
  17. 17.
    R. Tomaschitz, Ann. Phys. 322, 677 (2007) MATHCrossRefADSGoogle Scholar
  18. 18.
    R. Tomaschitz, Physica A 387, 3480 (2008) CrossRefADSGoogle Scholar
  19. 19.
    R. Tomaschitz, Physica B 404, 1383 (2009) CrossRefADSGoogle Scholar
  20. 20.
    R. Tomaschitz, Opt. Commun. 282, 1710 (2009) CrossRefADSGoogle Scholar
  21. 21.
    A. Pukhov, Rep. Prog. Phys. 66, 47 (2003) CrossRefADSGoogle Scholar
  22. 22.
    E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009) CrossRefADSGoogle Scholar
  23. 23.
    R. Tomaschitz, Eur. Phys. J. C (2010). doi: 10.1140/epjc/s10052-010-1401-8 MATHGoogle Scholar
  24. 24.
    F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi, B. Behera, M. Beilicke et al., Astron. Astrophys. 481, L103 (2008) CrossRefADSGoogle Scholar
  25. 25.
    V.A. Acciari, E. Aliu, T. Arlen, M. Beilicke, W. Benbow, M. Böttcher et al., Astrophys. J. 693, L104 (2009) CrossRefADSGoogle Scholar
  26. 26.
    E. Aliu, H. Anderhub, L.A. Antonelli, P. Antoranz, M. Backes, C. Baixeras et al., Astrophys. J. 692, L29 (2009) CrossRefADSGoogle Scholar
  27. 27.
    R. Tomaschitz, Physica A 385, 558 (2007) CrossRefADSGoogle Scholar
  28. 28.
    R. Tomaschitz, EPL 84, 19001 (2008) CrossRefADSGoogle Scholar
  29. 29.
    W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966) MATHGoogle Scholar
  30. 30.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972) MATHGoogle Scholar
  31. 31.
    D.E. Aspnes, Phys. Rev. 147, 554 (1966) CrossRefADSGoogle Scholar
  32. 32.
    S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993) CrossRefADSGoogle Scholar
  33. 33.
    U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009) CrossRefADSGoogle Scholar
  34. 34.
    A. Minguzzi, M.P. Tosi, Physica B 300, 27 (2001) CrossRefADSGoogle Scholar
  35. 35.
    R. Tomaschitz, Phys. Lett. A 366, 289 (2007) CrossRefADSGoogle Scholar
  36. 36.
    R. Tomaschitz, Phys. Lett. A 372, 4344 (2008) CrossRefADSGoogle Scholar
  37. 37.
    J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945) CrossRefADSGoogle Scholar
  38. 38.
    F. Hoyle, J.V. Narlikar, Rev. Mod. Phys. 67, 113 (1995) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    R. Tomaschitz, Class. Quantum Gravity 18, 4395 (2001) MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    G.N. Plass, Rev. Mod. Phys. 33, 37 (1961) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    J. Rafelski, L. Labun, Y. Hadad, AIP Conf. Proc. 1228, 39 (2009) ADSGoogle Scholar
  42. 42.
    Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, H. Ruhl, arXiv:1005.3980
  43. 43.
    P.A.M. Dirac, Proc. R. Soc. Lond. A 257, 32 (1960) MATHCrossRefMathSciNetADSGoogle Scholar
  44. 44.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982) Google Scholar
  45. 45.
    A.A. Abdo, M. Ackermann, M. Ajello, W.B. Atwood, M. Axelsson, L. Baldini et al., Astrophys. J. 707, 1310 (2009) CrossRefADSGoogle Scholar
  46. 46.
    R. Tomaschitz, EPL 85, 29001 (2009) CrossRefADSGoogle Scholar
  47. 47.
    T. Lindner, D.S. Hanna, J. Kildea, J. Ball, D.A. Bramel, J. Carson et al., Astropart. Phys. 28, 338 (2007) CrossRefADSGoogle Scholar
  48. 48.
    D. Horan, H.M. Badran, I.H. Bond, P.J. Boyle, S.M. Bradbury, J.H. Buckley et al., Astrophys. J. 603, 51 (2004) CrossRefADSGoogle Scholar
  49. 49.
    F. Aharonian, A. Akhperjanian, M. Beilicke, K. Bernlöhr, H.-G. Börst, H. Bojahr et al., Astron. Astrophys. 421, 529 (2004) CrossRefADSGoogle Scholar
  50. 50.
    R. Tomaschitz, Physica B 405, 1022 (2010) CrossRefADSGoogle Scholar
  51. 51.
    R. Tomaschitz, EPL 89, 39002 (2010) CrossRefADSGoogle Scholar
  52. 52.
    R. Tomaschitz, J. Phys. A 38, 2201 (2005) MATHCrossRefADSGoogle Scholar
  53. 53.
    R. Tomaschitz, Eur. Phys. J. C 45, 493 (2006) CrossRefADSGoogle Scholar
  54. 54.
    J.H. Eberly, A. Sleeper, Phys. Rev. 176, 1570 (1968) CrossRefADSGoogle Scholar
  55. 55.
    E.S. Sarachik, G.T. Schappert, Phys. Rev. D 1, 2738 (1970) CrossRefADSGoogle Scholar
  56. 56.
    A.A. Sokolov, I.M. Ternov, Radiation from Relativistic Electrons (Hilger, Bristol, 1986) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations