Applied Physics B

, Volume 100, Issue 3, pp 447–452

Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF

  • S. H. R. Müller
  • B. Böhm
  • M. Gleißner
  • S. Arndt
  • A. Dreizler
Rapid communication

Abstract

The investigation of the combustion process of a direct injection spark-ignition internal combustion (IC) engine is crucial in modern engine development. The present study is aimed at inspecting the temporal development of the spark induced flame kernel within single combustion cycles using high-speed planar laser-induced fluorescence (PLIF). The analysis is based upon the excitation of OH radicals, which are an indicator of the transient flame front. To achieve an adequate temporal resolution of the early combustion phase, the image sampling rate was set to 6 kHz, recording one image per crank-angle (CA) degree at 1000 rpm. A further feature of the technique is a large field of view spanning ∼54×53 mm. The performance of the transient combustion process is characterized by temporally tracking subsequential engine cycles individually. Flame front dynamics with different dilution levels of the intake air, simulating exhaust gas recirculation (EGR) are investigated. Resolving flame front dynamics especially with varying EGR is an important step towards an improved understanding of cyclic variations and pollutant formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, Appl. Opt. 41, 5002 (2002) CrossRefADSGoogle Scholar
  2. 2.
    B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006) CrossRefGoogle Scholar
  3. 3.
    R. Abu-Gharbieh, G. Hamarneh, T. Gustavsson, C.F. Kaminski, Opt. Express. 8, 278 (2001) CrossRefADSGoogle Scholar
  4. 4.
    J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997) CrossRefGoogle Scholar
  5. 5.
    I. Boxx, M. Stöhr, C. Carter, W. Meier, Appl. Phys. B 95, 23 (2009) CrossRefADSGoogle Scholar
  6. 6.
    C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007) CrossRefADSGoogle Scholar
  7. 7.
    C. Heeger, B. Böhm, I. Boxx, W. Meier, S.F. Ahmed, E. Mastorakos, A. Dreizler, in ASME Turbo Expo, Berlin, GT2008-50152 (2008) Google Scholar
  8. 8.
    M. Konle, F. Kiesewetter, T. Sattelmayer, Exp. Fluids 44, 529 (2008) CrossRefGoogle Scholar
  9. 9.
    C. Schneider, A. Dreizler, J. Janicka, Flow Turbul. Combust. 74, 103 (2005) MATHCrossRefGoogle Scholar
  10. 10.
    H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister, Appl. Phys. B 50, 473 (1990) CrossRefADSGoogle Scholar
  11. 11.
    J. Nygren, M. Richter, J. Hult, C.F. Kaminski, M. Aldén, in Proceedings of the Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA) (Nagoya, Japan, 2001), pp. 572–580 Google Scholar
  12. 12.
    J.D. Smith, V. Sick, SAE Paper 2005-01-3753 (2005) Google Scholar
  13. 13.
    T.D. Fansler, M.C. Drake, B. Böhm, in Proc. of 8th Int. Symposium on Combustion Diagnostics, Baden-Baden (2008) Google Scholar
  14. 14.
    V. Sick, M.C. Drake, T.D. Fansler, Exp. Fluids (2010). doi:10.1007/s00348-010-0891-3 Google Scholar
  15. 15.
    M. Gleißner, S. Arndt, R. Grzeszik, T. Lindemann, S. Müller, B. Böhm, A. Dreizler, in 9th Int. Conf. Engine Comb. Processes, Munich (2009) Google Scholar
  16. 16.
    S.H.R. Müller, B. Böhm, M. Gleißner, R. Grzeszik, S. Arndt, A. Dreizler, Exp. Fluids 48, 281 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. H. R. Müller
    • 1
  • B. Böhm
    • 1
  • M. Gleißner
    • 2
  • S. Arndt
    • 2
  • A. Dreizler
    • 1
  1. 1.Technische Universität DarmstadtCenter of Smart Interfaces, Institute of Reactive Flows and DiagnosticsDarmstadtGermany
  2. 2.Robert Bosch GmbHCR/AEE2-ShGerlingenGermany

Personalised recommendations