Applied Physics B

, Volume 101, Issue 3, pp 497–509

Highly sensitive dispersion spectroscopy by probing the free spectral range of an optical cavity using dual-frequency modulation

Article

Abstract

Dual-frequency modulation (DFM) has been used to continuously track the frequency shifts of optical cavity modes in the vicinity of an optical transition of a gas inside the cavity for assessment of the gas concentration. A theoretical description of the size and lineshape of the DFM dispersion spectroscopy (DFM-DS) signal is given. Since the signal is measured in terms of a radio frequency the technique is insensitive to laser intensity fluctuations. The signal strength, which can accurately be obtained by curve fitting, only depends on fundamental parameters (including the line strength), thus enabling quantitative detection without calibration procedure. In a first demonstration, using a compact setup based on a narrowband fiber laser, the change in free spectral range around a value of 379.9 MHz due to an acetylene transition near 1531 nm was measured with a resolution of 6 Hz (i.e. with an accuracy of 1.5 parts in 108) in 12.5 s acquisition time, which corresponds to a minimum detectable integrated absorption (SNR=3) of 3×10−9 cm−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ye, T.W. Lynn, in Atomic, Molecular, and Optical Physics, ed. by B. Bederson, H. Walther (Academic Press, San Diego, 2003), pp. 1–83 Google Scholar
  2. 2.
    P.D. Knight, A. Cruz-Cabrera, B.C. Bergner, Proc. SPIE 4772, 114 (2002) CrossRefADSGoogle Scholar
  3. 3.
    I. Ozdur, S. Ozharar, F. Quinlan, S. Gee, P.J. Delfyett, Electron. Lett. 44, 927 (2008) CrossRefGoogle Scholar
  4. 4.
    P.J. Manson, Rev. Sci. Instrum. 70, 3834 (1999) CrossRefADSGoogle Scholar
  5. 5.
    F. Bondu, O. Debieu, Appl. Opt. 46, 2611 (2007) CrossRefADSGoogle Scholar
  6. 6.
    C.R. Locke, D. Stuart, E.N. Ivanov, A.N. Luiten, Opt. Express 17, 21935 (2009) CrossRefADSGoogle Scholar
  7. 7.
    Z. Bay, G.G. Luther, Appl. Phys. Lett. 13, 303 (1968) CrossRefADSGoogle Scholar
  8. 8.
    G.M. Cutler, Opt. Commun. 59, 17 (1986) CrossRefADSGoogle Scholar
  9. 9.
    R.G. DeVoe, R.G. Brewer, Phys. Rev. A 30, 2827 (1984) CrossRefADSGoogle Scholar
  10. 10.
    P. Courteille, L.S. Ma, W. Neuhauser, R. Blatt, Appl. Phys. B 59, 187 (1994) CrossRefADSGoogle Scholar
  11. 11.
    J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998) CrossRefADSGoogle Scholar
  12. 12.
    L.S. Ma, J. Ye, P. Dube, J.L. Hall, J. Opt. Soc. Am. B 16, 2255 (1999) CrossRefADSGoogle Scholar
  13. 13.
    V. Leeuwen, J. Opt. Soc. Am. B 21, 1713 (2004) CrossRefADSGoogle Scholar
  14. 14.
    F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007) CrossRefADSGoogle Scholar
  15. 15.
    G. Hagel, M. Houssin, M. Knoop, C. Champenois, M. Vedel, F. Vedel, Rev. Sci. Instrum. 76 (2005) Google Scholar
  16. 16.
    A. O’Keefe, D. Deacon, Rev. Sci. Instrum. 59, 2544 (1988) CrossRefADSGoogle Scholar
  17. 17.
    D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997) CrossRefADSGoogle Scholar
  18. 18.
    A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307, 343 (1999) CrossRefGoogle Scholar
  19. 19.
    J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40, 4904 (2001) CrossRefADSGoogle Scholar
  20. 20.
    B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005) CrossRefADSGoogle Scholar
  21. 21.
    A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Appl. Phys. B 92, 313 (2008) CrossRefADSGoogle Scholar
  22. 22.
    P.W. Milonni, J.H. Eberly, Lasers (Wiley, New York, 1988) Google Scholar
  23. 23.
    C.R. Schwarze, J.A. Gargas, J.H. Rentz, M. Hercher, Appl. Opt. 37, 3942 (1998) CrossRefADSGoogle Scholar
  24. 24.
    G. Litfin, C.R. Pollock, R.F. Curl, F.K. Tittel, J. Chem. Phys. 72, 6602 (1980) CrossRefADSGoogle Scholar
  25. 25.
    A. Mugino, T. Tamamoto, T. Omatsu, M.A. Gubin, A. Morinaga, N. Takeuchi, Opt. Rev. 3, 243 (1996) CrossRefGoogle Scholar
  26. 26.
    J. Ye, Ph.D. Thesis, University of Colorado (1997) Google Scholar
  27. 27.
    L.R. Pendrill, Metrologia 41, S40 (2004) CrossRefADSGoogle Scholar
  28. 28.
    I.P. Konovalov, J. Russ. Laser Res. 25, 383 (2004) CrossRefGoogle Scholar
  29. 29.
    G.C. Bjorklund, Opt. Lett. 5, 15 (1980) CrossRefADSGoogle Scholar
  30. 30.
    W. Ma, A. Foltynowicz, O. Axner, J. Opt. Soc. Am. B 25, 1144 (2008) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    F.M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, O. Axner, Opt. Express 15, 10822 (2007) CrossRefADSGoogle Scholar
  32. 32.
    The HITRAN 2008 molecular spectroscopic database is available at www.hitran.com
  33. 33.
    A. Foltynowicz, W.G. Ma, F.M. Schmidt, O. Axner, J. Opt. Soc. Am. B 25, 1156 (2008) CrossRefADSGoogle Scholar
  34. 34.
    O. Axner, W. Ma, A. Foltynowicz, J. Opt. Soc. Am. B 25, 1166 (2008) CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    A. Foltynowicz, W.G. Ma, O. Axner, Opt. Express 16, 14689 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • F. M. Schmidt
    • 1
  • W. Ma
    • 1
  • A. Foltynowicz
    • 1
  • O. Axner
    • 1
  1. 1.Department of PhysicsUmeå UniversityUmeåSweden
  2. 2.Laboratory of Physical Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.College of Physics and Electronics EngineeringShanxi UniversityTaiyuanP.R. China
  4. 4.JILA, National Institute of Standards and Technology and University of Colorado, Department of PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations