Advertisement

Applied Physics B

, Volume 100, Issue 3, pp 655–663 | Cite as

Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence

  • F. Goulay
  • P. E. Schrader
  • H. A. Michelsen
Article

Abstract

Flame-generated soot was heated using a pulsed laser, and temperatures of the irradiated soot were inferred by fitting the Planck function to spectrally resolved laser-induced incandescence with the temperature as an adjustable parameter. The effect of the wavelength dependence of the emissivity on the inferred temperatures of the irradiated soot was studied using selected expressions for the soot emissivity in the fit. Depending upon the choice of the functional form of the emissivity, the maximum temperature reached by the soot during the laser pulse was calculated to span a range of 341 K (3475–3816 K) at a 1064-nm laser fluence of 0.1 J/cm2 and 456 K (4115–4571 K) at a 1064-nm laser fluence of 0.4 J/cm2 with a 1σ standard deviation about the mean of ∼25 K. Comparison of the present results with temperature measurements from previous studies suggests that the emissivity may depend on flame conditions and that further investigation on the subject is needed. The use of two-color or spectrally resolved LII to infer the soot temperature during or after laser heating requires a careful characterization of the wavelength dependence of the emissivity. The spread in temperature leads to large uncertainties regarding the physico-chemical processes occurring at the surface of the soot during the laser heating.

Keywords

Emissivity Laser Heating Wavelength Dependence Soot Volume Fraction Soot Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, London, 2002), p. 252 Google Scholar
  2. 2.
    D.B. Kittelson, J. Aerosol Sci. 29, 575 (1998) CrossRefGoogle Scholar
  3. 3.
    T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002) CrossRefGoogle Scholar
  4. 4.
    C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000) CrossRefGoogle Scholar
  5. 5.
    B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683 (2000) CrossRefADSGoogle Scholar
  6. 6.
    R.T. Wainner, J.M. Seitzman, Soot diagnostics using laser-induced incandescence in flames and exhaust flows, in 37th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 1999), AIAA 99 Google Scholar
  7. 7.
    D. Baumgardner, G. Kok, M. Kramer, F. Weidle, Environ. Res. Lett. 3, 025010 (2008) CrossRefADSGoogle Scholar
  8. 8.
    J.P. Schwarz, R.S. Gao, D.W. Fahey, D.S. Thomson, L.A. Watts, J.C. Wilson, J.M. Reeves, M. Darbeheshti, D.G. Baumgardner, G.L. Kok, S.H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Karcher, J.G. Slowik, K.H. Rosenlof, T.L. Thompson, A.O. Langford, M. Loewenstein, K.C. Aikin, J. Geophys. Res. D 111, D16207 (2006) CrossRefADSGoogle Scholar
  9. 9.
    J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.E. Bengtsson, H. Honen, J.D. Black, I. Vallet, Appl. Phys. B 95, 825 (2009) CrossRefADSGoogle Scholar
  10. 10.
    N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, K.D. King, Combust. Flame 156, 1339 (2009) CrossRefGoogle Scholar
  11. 11.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) CrossRefADSGoogle Scholar
  12. 12.
    C. Allouis, F. Beretta, A. D’Alessio, Exp. Therm Fluid Sci. 27, 455 (2003) CrossRefGoogle Scholar
  13. 13.
    A. Boiarciuc, F. Foucher, C. Mounaim-Rousselle, Appl. Phys. B 83, 413 (2006) CrossRefADSGoogle Scholar
  14. 14.
    B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002) CrossRefGoogle Scholar
  15. 15.
    V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005) CrossRefADSGoogle Scholar
  16. 16.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006) CrossRefADSGoogle Scholar
  17. 17.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 657 (2009) CrossRefADSGoogle Scholar
  18. 18.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003) CrossRefADSGoogle Scholar
  19. 19.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005) CrossRefGoogle Scholar
  20. 20.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 83, 435 (2006) CrossRefADSGoogle Scholar
  21. 21.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000) CrossRefGoogle Scholar
  22. 22.
    F. Goulay, P.E. Schrader, H.A. Michelsen, In preparation Google Scholar
  23. 23.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003) CrossRefADSGoogle Scholar
  24. 24.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007) CrossRefADSGoogle Scholar
  25. 25.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation. Physical Chemistry: A Series of Monographs, vol. 16 (Academic Press, San Diego, 1969) Google Scholar
  26. 26.
    J.C. Ku, K.-H. Shim, J. Quant. Spectrosc. Radiat. Transfer 47, 201 (1992) CrossRefADSGoogle Scholar
  27. 27.
    J.C. Ku, K.-H. Shim, J. Heat Transfer 113, 953 (1991) CrossRefGoogle Scholar
  28. 28.
    K.A. Fuller, W.C. Malm, S.M. Kreidenweis, J. Geophys. Res. 104, 15 (1999) CrossRefGoogle Scholar
  29. 29.
    J. Reimann, S.-A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009) CrossRefADSGoogle Scholar
  30. 30.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006) CrossRefGoogle Scholar
  31. 31.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. Ser. A 430, 577 (1990) CrossRefADSGoogle Scholar
  32. 32.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  33. 33.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009) CrossRefADSGoogle Scholar
  34. 34.
    K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996) CrossRefGoogle Scholar
  35. 35.
    A. Borghesi, G. Guizzetti, in Handbook of Optical Constants of Solids II, ed. by E.D. Palik (Academic Press, San Diego, 1998), p. 449 Google Scholar
  36. 36.
    D.L. Greenaway, G. Harbeke, F. Bassani, E. Tosatti, Phys. Rev. 178, 1340 (1969) CrossRefADSGoogle Scholar
  37. 37.
    A.M. Malvezzi, M. Romanoni, Int. J. Thermophys. 13, 131 (1992) CrossRefGoogle Scholar
  38. 38.
    B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993) CrossRefGoogle Scholar
  39. 39.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transfer 123, 331 (2001) CrossRefGoogle Scholar
  40. 40.
    Ü.Ö. Köylü, Combust. Flame 109, 488 (1996) CrossRefGoogle Scholar
  41. 41.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996) CrossRefGoogle Scholar
  42. 42.
    M. Schnaiter, H. Horvath, O. Mohler, K.H. Naumann, H. Saathoff, O.W. Schock, J. Aerosol Sci. 34, 1421 (2003) CrossRefGoogle Scholar
  43. 43.
    S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transfer 122, 517 (2000) CrossRefGoogle Scholar
  44. 44.
    R.A. Dobbins, G.W. Mulholland, N.P. Bryner, Atmos. Environ. 28, 889 (1994) CrossRefGoogle Scholar
  45. 45.
    C.W. Bruce, T.F. Stromberg, K.P. Gurton, J.B. Mozer, Appl. Opt. 30, 1537 (1991) CrossRefADSGoogle Scholar
  46. 46.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, O.L. Gulder, E.J. Weckman, R.A. Fraser, AIAA J. 40, 1789 (2002) CrossRefADSGoogle Scholar
  47. 47.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010) CrossRefGoogle Scholar
  48. 48.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006) CrossRefADSGoogle Scholar
  49. 49.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 96, 613 (2009) CrossRefADSGoogle Scholar
  50. 50.
    F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009) CrossRefGoogle Scholar
  51. 51.
    R.J. Santoro, J.H. Miller, Langmuir 3, 244 (1987) CrossRefGoogle Scholar
  52. 52.
    R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993) CrossRefGoogle Scholar
  53. 53.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999) CrossRefGoogle Scholar
  54. 54.
    C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 66, 1 (1989) CrossRefGoogle Scholar
  55. 55.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987) CrossRefGoogle Scholar
  56. 56.
    M.A. Dansson, M. Boisselle, M.A. Linne, H.A. Michelsen, Appl. Opt. 46, 8095 (2007) CrossRefADSGoogle Scholar
  57. 57.
    S. Distasio, P. Massoli, Meas. Sci. Technol. 5, 1453 (1994) CrossRefADSGoogle Scholar
  58. 58.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973) CrossRefGoogle Scholar
  59. 59.
    P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995) CrossRefADSGoogle Scholar
  60. 60.
    F. Goulay, P.E. Schrader, L. Nemes, H.A. Michelsen, Mol. Phys. 108, 1013 (2010) CrossRefGoogle Scholar
  61. 61.
    K. Sasaki, T. Wakabayashi, S. Matsui, K. Kadota, J. Appl. Phys. 91, 4033 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Combustion Research FacilitySandia National LaboratoriesLivermoreUSA

Personalised recommendations