Applied Physics B

, Volume 100, Issue 3, pp 521–533 | Cite as

Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure

Article

Abstract

Ablation of molecular solids with pulsed ultraviolet lasers at atmospheric pressure is an important process in (bio-)organic mass spectrometry. Of practical importance for analytical sampling and analysis are the plume formation and expansion. Plumes formed by atmospheric-pressure laser ablation of anthracene and 2,5-dihydroxybenzoic acid (2,5-DHB) were studied by light scattering imaging, which showed significant material release in the form of aerosols. The monitored plume expansion dynamics could be fitted to the drag-force model, yielding initial plume velocities of 150 m/s for anthracene and 43 m/s for DHB. While the angle of incidence does not affect the plume direction and propagation, a large dependence of the plume-expansion velocity on the laser pulse energy could be found, which is limited at atmospheric pressure by the onset of plasma shielding. With respect to analytical applications, the efficiency of sampling of the laser ablation products by a capillary could be experimentally visualized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000) Google Scholar
  2. 2.
    A.W. Miziolek, Laser-induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University Press, Cambridge, 2006) CrossRefGoogle Scholar
  3. 3.
    R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Talanta 57, 425 (2002) CrossRefGoogle Scholar
  4. 4.
    L. Van Vaeck, H. Struyf, W. Van Roy, F. Adams, Mass Spectrom. Rev. 13, 189 (1994) CrossRefGoogle Scholar
  5. 5.
    L. Van Vaeck, H. Struyf, W. Van Roy, F. Adams, Mass Spectrom. Rev. 13, 209 (1994) CrossRefGoogle Scholar
  6. 6.
    M. Karas, U. Bahr, U. Giessmann, Mass Spectrom. Rev. 10, 335 (1991) CrossRefGoogle Scholar
  7. 7.
    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991) CrossRefADSGoogle Scholar
  8. 8.
    K. Dreisewerd, Chem. Rev. 103, 395 (2003) CrossRefGoogle Scholar
  9. 9.
    P.D. Setz, T.A. Schmitz, R. Zenobi, Rev. Sci. Instrum. 77, 024101 (2006) CrossRefADSGoogle Scholar
  10. 10.
    L. Kolaitis, D.M. Lubman, Anal. Chem. 58, 2137 (1986) CrossRefGoogle Scholar
  11. 11.
    V.V. Laiko, M.A. Baldwin, A.L. Burlingame, Anal. Chem. 72, 652 (2000) CrossRefGoogle Scholar
  12. 12.
    R.E. Russo, X. Mao, S.S. Mao, Anal. Chem. A 74, 70 (2002) Google Scholar
  13. 13.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003) CrossRefGoogle Scholar
  14. 14.
    S. Georgiou, A. Koubenakis, Chem. Rev. 103, 349 (2003) CrossRefGoogle Scholar
  15. 15.
    A. Vertes, P. Juhasz, M. De Wolf, R. Gijbels, Int. J. Mass Spectrom. Ion Proc. 94, 63 (1989) CrossRefGoogle Scholar
  16. 16.
    M. Karas, R. Kruger, Chem. Rev. 103, 427 (2003) CrossRefGoogle Scholar
  17. 17.
    N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999) ADSGoogle Scholar
  18. 18.
    S.B. Wen, X.L. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007) CrossRefADSGoogle Scholar
  19. 19.
    A. Bogaerts, Z. Chen, J. Anal. At. Spectrom. 19, 1169 (2004) CrossRefGoogle Scholar
  20. 20.
    A. Bogaerts, Z.Y. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta, Part B 58, 1867 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005) CrossRefADSGoogle Scholar
  22. 22.
    G. Callies, P. Berger, H. Hugel, J. Phys. D 28, 794 (1995) CrossRefADSGoogle Scholar
  23. 23.
    F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, S. Iijima, Appl. Phys. A 69, S223 (1999) ADSGoogle Scholar
  24. 24.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003) CrossRefADSGoogle Scholar
  25. 25.
    S.B. Wen, X.L. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023115 (2007) CrossRefADSGoogle Scholar
  26. 26.
    R. Hergenroder, Spectrochim. Acta, Part B 61, 284 (2006) CrossRefADSGoogle Scholar
  27. 27.
    J.M. Auerhammer, R. Walker, A.F.G. Van Der Meer, B. Jean, Appl. Phys. B 68, 111 (1999) CrossRefADSGoogle Scholar
  28. 28.
    I. Apitz, A. Vogel, Appl. Phys. A 81, 329 (2005) CrossRefADSGoogle Scholar
  29. 29.
    Z. Chen, A. Vertes, Phys. Rev. E 77, 036316 (2008) CrossRefADSGoogle Scholar
  30. 30.
    T.W. Heise, E.S. Yeung, Anal. Chem. 66, 355 (1994) CrossRefGoogle Scholar
  31. 31.
    J. Preisler, E.S. Yeung, Appl. Spectrosc. 49, 1826 (1995) CrossRefADSGoogle Scholar
  32. 32.
    J. Koch, S. Schlamp, T. Rosgen, D. Fliegel, D. Gunther, Spectrochim. Acta, Part B 62, 20 (2007) CrossRefADSGoogle Scholar
  33. 33.
    J. Koch, M. Walle, S. Schlamp, T. Rosgen, D. Gunther, Spectrochim. Acta, Part B 63, 37 (2008) ADSGoogle Scholar
  34. 34.
    H.C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981) Google Scholar
  35. 35.
    A.B. Brailovsky, S.V. Gaponov, V.I. Luchin, Appl. Phys. A 61, 81 (1995) CrossRefADSGoogle Scholar
  36. 36.
    X. Zhang, S.S. Chu, J.R. Ho, C.P. Grigoropoulos, Appl. Phys. A 64, 545 (1997) CrossRefADSGoogle Scholar
  37. 37.
    R. Hergenroder, J. Anal. At. Spectrom. 21, 1016 (2006) CrossRefGoogle Scholar
  38. 38.
    D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992) CrossRefADSGoogle Scholar
  39. 39.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D 35, 2935 (2002) CrossRefGoogle Scholar
  40. 40.
    R. Kelly, A. Miotello, Nucl. Instrum. Methods Phys. Res. B 122, 374 (1997) CrossRefADSGoogle Scholar
  41. 41.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966) Google Scholar
  42. 42.
    L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959) MATHGoogle Scholar
  43. 43.
    J.L. Taylor, Philos. Mag. 46, 317 (1955) MATHGoogle Scholar
  44. 44.
    P.E. Dyer, J. Sidhu, J. Appl. Phys. 64, 4657 (1988) CrossRefADSGoogle Scholar
  45. 45.
    S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A 92, 907 (2008) CrossRefADSGoogle Scholar
  46. 46.
    C.S. Ake, R.S. De Castro, H. Sobral, M. Villagran-Muniz, J. Appl. Phys. 100, 053305 (2006) CrossRefADSGoogle Scholar
  47. 47.
    E.H. Piepmeier, H.V. Malmstadt, Anal. Chem. 41, 700 (1969) CrossRefGoogle Scholar
  48. 48.
    Y. Iida, Spectrochim. Acta, Part B 45, 1353 (1990) CrossRefADSGoogle Scholar
  49. 49.
    W. Sdorra, K. Niemax, Microchim. Acta 107, 319 (1992) CrossRefGoogle Scholar
  50. 50.
    X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russo, J. Appl. Phys. 74, 4915 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. A. Schmitz
    • 1
  • J. Koch
    • 1
  • D. Günther
    • 1
  • R. Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland

Personalised recommendations