Applied Physics B

, Volume 99, Issue 4, pp 633–637

High-speed spectrally resolved multifocal multiphoton microscopy

Article
  • 129 Downloads

Abstract

We present a spectrally resolved multifocal multiphoton microscopy that is capable of performing fast 2-dimensional (2-D) spectral measurements of fluorescent samples with optical sectioning. One galvanometer mirror is used to scan the array of excitation foci across the sample along one direction (x) for two-photon excitation. Fluorescence emission from the excited lines on the sample is spectrally fanned out with a prism along the y direction, and a CCD array is used to acquire the spectrally resolved image. Another galvanometer mirror scans the excitation foci lines along the y direction step by step to obtain 3-dimensional (3-D) spectral data cube of the sample. A proof-of-principle experiment is performed with fluorescent microspheres of different colors. Spectrally resolved images of 512×512 pixels can be obtained by acquiring only 128 raw images when a 4×4 excitation foci array is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990) CrossRefADSGoogle Scholar
  2. 2.
    M. Yang, L. Li, P. Jiang, A.R. Moossa, S. Penman, R.M. Hoffman, pnas.2436101100 (2003) Google Scholar
  3. 3.
    J.R. Mansfield, C. Hoyt, R.M. Levenson, Current Protocols in Molecular Biology 14.19.1 (2008) Google Scholar
  4. 4.
    Q.Y. Fang, T. Papaioannou, J.A. Jo, R. Vaitha, K. Shastry, L. Marcu, Rev. Sci. Instrum. 75, 151 (2004) CrossRefADSGoogle Scholar
  5. 5.
    H. Makhlouf, A.F. Gmitro, A.A. Tanbakuchi, J.A. Udovich, A.R. Rouse, J. Biomed. Opt. 13, 044016 (2008) CrossRefADSGoogle Scholar
  6. 6.
    L.C. Hwang, M. Leutenegger, M. Gösch, T. Lasser, P. Rigler, W. Meier, T. Wohland, Opt. Lett. 31, 1310 (2006) CrossRefADSGoogle Scholar
  7. 7.
    F. Jean, G. Bourg-Heckly, B. Viellerobe, Opt. Express 15, 4008 (2007) CrossRefADSGoogle Scholar
  8. 8.
    V. Seyfried, H. Birk, R. Storz, H. Ulrich, in SPIE, vol. 5139 (2003) Google Scholar
  9. 9.
    T. Bergmann, M. Tiemann, J. Martini, K. Tönsing, D. Anselmetti, SPIE-OSA 6630, 663015 (2007) Google Scholar
  10. 10.
    Y. Yuan, T. Papaioannou, Q. Fang, Opt. Lett. 33, 791 (2008) CrossRefADSGoogle Scholar
  11. 11.
    Y. Sun, R. Liu, D.S. Elson, C.W. Hollars, J.A. Jo, J. Park, Y. Sun, L. Marcu, Opt. Lett. 33, 630 (2008) CrossRefADSGoogle Scholar
  12. 12.
    J. Bewersdorf, R. Pick, S.W. Hell, Opt. Lett. 23, 655 (1998) CrossRefADSGoogle Scholar
  13. 13.
    M. Straub, S.W. Hell, Bioimaging 6, 177 (1998) CrossRefGoogle Scholar
  14. 14.
    L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, H. Niu, Appl. Phys. B 84, 379 (2006) CrossRefADSGoogle Scholar
  15. 15.
    J. Qu, L. Liu, D. Chen, Z. Lin, G. Xu, B. Guo, H. Niu, Opt. Lett. 31, 368 (2006) CrossRefADSGoogle Scholar
  16. 16.
    G. Donnert, J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, S.W. Hell, Biophys. J. 92, L67 (2007) CrossRefGoogle Scholar
  17. 17.
    A.D. Hoppe, S.L. Shorte, J.A. Swanson, R. Heintzmann, Biophys. J. 95, 400 (2008) CrossRefGoogle Scholar
  18. 18.
    R.E. Pagano, O.C. Martin, H.C. Kang, R.P. Haugland, J. Cell Biol. 113, 1267 (1991) CrossRefGoogle Scholar
  19. 19.
    A. Egner, S.W. Hell, J. Opt. Soc. Am. A 17, 1192 (2000) CrossRefADSGoogle Scholar
  20. 20.
    R.A. Neher, M. Mitkovski, F. Kirchhoff, E. Neher, F.J. Theis, A. Zeug, Biophys. J. 96, 3791 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Y. Shao
    • 1
  • J. Qu
    • 1
  • H. Li
    • 1
  • Y. Wang
    • 1
  • J. Qi
    • 1
  • G. Xu
    • 1
  • H. Niu
    • 1
  1. 1.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province Institute of OptoelectronicsShenzhen UniversityShenzhenChina

Personalised recommendations