Applied Physics B

, Volume 99, Issue 4, pp 695–700 | Cite as

Antireflective properties of AZO subwavelength gratings patterned by holographic lithography



We fabricate the aluminum-doped zinc oxide (AZO) subwavelength gratings (SWG) on Si and glass substrates by holographic lithography and sequent CH4/H2/Ar reactive ion etching process. The etch selectivity of AZO over photoresist mask as well as the nano-scale shape is optimized for better antireflection performance. To analyze the antireflective properties of AZO SWG surface, the optical reflectivity is measured and then calculated together with a rigorous coupled-wave analysis. The reflectance spectrum can be considerably changed by incorporating the SWG into AZO film. As the SWG height of AZO on Si substrate increases, the magnitude of interference oscillations in the reflectance spectrum tends to be reduced with the larger difference between its maxima. The use of optimized SWG can significantly reduce the surface reflection of AZO film at the desired wavelengths. The measured reflectance data of AZO SWG are reasonably consistent with the simulation results. No considerable change in transmission characteristics is observed for AZO SWG structures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.B. Shi, Z.Q. Ma, X. Tang, C.B. Feng, Proc. SPIE 6984, 69843D (2008) Google Scholar
  2. 2.
    M.F. Schubert, F.W. Mont, S. Chhajed, D.J. Poxson, J.K. Kim, E.F. Schubert, Opt. Express 16, 5290 (2008) CrossRefADSGoogle Scholar
  3. 3.
    J. Zhao, M.A. Green, IEEE Trans. Electron Dev. 38, 1925 (1991) CrossRefADSGoogle Scholar
  4. 4.
    P. Lalanne, G.M. Morris, Proc. SPIE 2776, 300 (1996) CrossRefADSGoogle Scholar
  5. 5.
    S. Walheim, E. Schaffer, J. Mlynek, U. Steiner, Science 283, 520 (1999) CrossRefADSGoogle Scholar
  6. 6.
    S.J. Wilson, M.C. Hutley, Opt. Acta 29, 993 (1982) ADSGoogle Scholar
  7. 7.
    S.A. Boden, D.M. Bagnall, Appl. Phys. Lett. 93, 133108 (2008) CrossRefADSGoogle Scholar
  8. 8.
    H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, M. Yamaguchi, Jpn. J. Appl. Phys. 46, 3333 (2007) CrossRefADSGoogle Scholar
  9. 9.
    H.K. Kanamori, H. Sai, H. Yugami, Appl. Phys. Lett. 78, 142 (2001) CrossRefADSGoogle Scholar
  10. 10.
    Y.M. Song, S.Y. Bae, J.S. Yu, Y.T. Lee, Opt. Lett. 34, 1702 (2009) CrossRefADSGoogle Scholar
  11. 11.
    K. Wensu, S.C. Huang, A. Kechiantz, C.P. Lee, Opt. Quantum Electron. 37, 425 (2005) CrossRefGoogle Scholar
  12. 12.
    Z. Yu, H. Gao, W. Wu, H. Ge, S.Y. Chou, J. Vac. Sci. Technol. B 21, 2874 (2003) CrossRefGoogle Scholar
  13. 13.
    K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, H. Nakano, Opt. Lett. 26, 1642 (2001) CrossRefADSGoogle Scholar
  14. 14.
    I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, T.S. Tsacheva, Mater. Chem. Phys. 63, 104 (2000) CrossRefGoogle Scholar
  15. 15.
    Z.B. Ayadi, L.E. Mir, K. Djessas, S. Alaya, Nanotechnology 18, 445702 (2007) CrossRefGoogle Scholar
  16. 16.
    B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, J. Appl. Phys. 101, 033713 (2007) CrossRefADSGoogle Scholar
  17. 17.
    F. Chaabouni, M. Abaab, B. Rezig, Superlattices Microstruct. 39, 171 (2006) CrossRefADSGoogle Scholar
  18. 18.
    S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L. Muskens, G. Immink, E.P.A.M. Bakkers, W.L. Vos, J.G. Rivas, Adv. Mater. 21, 973 (2009) CrossRefGoogle Scholar
  19. 19.
    M.G. Moharam, Proc. SPIE 883, 8 (1988) Google Scholar
  20. 20.
    Y.M. Song, J.S. Yu, Y.T. Lee, Opt. Lett. 35, 276 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. W. Leem
    • 1
  • Y. M. Song
    • 2
  • Y. T. Lee
    • 2
  • J. S. Yu
    • 1
  1. 1.Department of Electronics and Radio EngineeringKyung Hee UniversityGiheung-gu, Yongin-si, Gyeonggi-doRepublic of Korea
  2. 2.Department of Information and CommunicationsGwangju Institute of Science and TechnologyBuk-gu, GwangjuRepublic of Korea

Personalised recommendations