Advertisement

Applied Physics B

, Volume 100, Issue 2, pp 303–312 | Cite as

Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres

  • D. Masiyano
  • J. HodgkinsonEmail author
  • R. P. Tatam
Article

Abstract

We have studied the effects of random laser speckle and self-mixing interference on TDLS based gas measurements made using integrating spheres. Details of the theory and TDLS apparatus are given in Part 1 of this paper and applied here to integrating spheres. Experiments have been performed using two commercial integrating spheres with diameters of 50 mm and 100 mm for the detection of methane at 1651 nm. We have calculated the expected levels of laser speckle related uncertainty, considered to be the fundamental limiting noise, and imaged subjective laser speckle in a sphere using different sized apertures. For wavelength modulation spectroscopy, noise equivalent absorbances (NEAs) of around 5×10−5 were demonstrated in both cases, corresponding to limits of detection of 1.2 ppm methane and 0.4 ppm methane respectively. Longer-term drift was found to be at an NEA of 4×10−4. This lies within our broad range of expectations. For a direct spectral scan with no wavelength dither, a limit of detection of 75 ppm or fractional measured power uncertainty of 3×10−3 corresponded well with our prediction for the objective speckle uncertainty.

Keywords

Speckle Noise Laser Speckle Tunable Diode Laser Absorption Spectroscopy Wavelength Modulation Spectroscopy Optical Diffuser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.U. White, J. Opt. Soc. Am. 32, 285 (1942) CrossRefADSGoogle Scholar
  2. 2.
    D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964) CrossRefADSGoogle Scholar
  3. 3.
    S.M. Chernin, E.G. Barskaya, Appl. Opt. 30(1), 51 (1991) CrossRefADSGoogle Scholar
  4. 4.
    Toptica GmbH, Product specification. Compact Herriott cell for absorption spectroscopy: CMP-30. Available at www.toptica.com (2009)
  5. 5.
    R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998) CrossRefADSGoogle Scholar
  6. 6.
    A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988) CrossRefADSGoogle Scholar
  7. 7.
    A.G. Berezin, S.M. Chernin, D.B. Stavrovskii, in Proc. 7th International Conference on Tunable Diode Laser Spectroscopy—TDLS09, Paper E2 (2009) Google Scholar
  8. 8.
    H.I. Schiff, G.I. Mackay, J. Bechara, in Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York, 1994). Chapter 5 Google Scholar
  9. 9.
    Labsphere Inc. A Guide to Integrating Sphere Theory and Applications (Labsphere, North Sutton, 1998) Google Scholar
  10. 10.
    P. Elterman, Appl. Opt. 9(9), 2140 (1970) CrossRefADSGoogle Scholar
  11. 11.
    L.M. Hanssen, K.A. Snail, in Handbook of Vibrational Spectroscopy, vol. 2, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002), p. 1175 Google Scholar
  12. 12.
    E.S. Fry, G.W. Kattawar, R.M. Pope, Appl. Opt. 31(12), 2055 (1992) CrossRefADSGoogle Scholar
  13. 13.
    I. Fecht, M. Johnson, Meas. Sci. Technol. 10, 612 (1999) CrossRefADSGoogle Scholar
  14. 14.
    J. Hodgkinson, M. Johnson, J.P. Dakin, Appl. Opt. 44, 4360 (2005) CrossRefADSGoogle Scholar
  15. 15.
    E. Hawe, P. Chambers, C. Fitzpatrick, E. Lewis, Meas. Sci. Technol. 18, 3187 (2007) CrossRefADSGoogle Scholar
  16. 16.
    E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, E. Lewis, Sensor. Actuat. A 141, 414 (2008) Google Scholar
  17. 17.
    C.G. Venkatesh, R.S. Eng, A.W. Mantz, Appl. Opt. 19(10), 1704 (1980) CrossRefADSGoogle Scholar
  18. 18.
    R.M. Abdullin, A.V. Lebedev, Sov. J. Opt. Technol. 55(3), 139 (1988) Google Scholar
  19. 19.
    S. Tranchart, I.H. Bachir, J.-L. Destombes, Appl. Opt. 35(36), 7070 (1996) CrossRefADSGoogle Scholar
  20. 20.
    D. Masiyano, J. Hodgkinson, R.P. Tatam, Appl. Phys. B 90, 279 (2008) CrossRefADSGoogle Scholar
  21. 21.
    J. Hodgkinson, D. Masiyano, R.P. Tatam, Appl. Opt. 48(30), 5748 (2009) CrossRefADSGoogle Scholar
  22. 22.
    A. Bozeit, J. Burke, H. Helmers, H. Sagehorn, R. Schuh, Opt. Laser Technol. 30, 325 (1998) CrossRefADSGoogle Scholar
  23. 23.
    D. Masiyano, J. Hodgkinson, S. Schilt, R.P. Tatam, Appl. Phys. B 96(4), 863 (2009) CrossRefADSGoogle Scholar
  24. 24.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Engineering Photonics Group, School of EngineeringCranfield UniversityBedfordshireUK
  2. 2.Two Trees PhotonicsMilton KeynesUK

Personalised recommendations