Advertisement

Applied Physics B

, Volume 102, Issue 2, pp 381–389 | Cite as

VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell

Article

Abstract

A compact and calibration-free carbon monoxide sensor approach utilizing the wide current-tunability of 2.3 μm VCSELs is reported. A separate reference cell is avoided by filling the reference gas (methane) in the photodetector housing. By applying bandwidth optimized wide/narrow wavelength scan concept, inherent wavelength scale calibration and self-monitoring of the sensor are realized, with which the laser aging process is also under control. An efficient linear least-squares curve fit using an analytical signal model for the narrow scan spectrum is done, utilizing the knowledge of the absolute wavelength scale and also the estimated WMS modulation amplitude obtained from the wide scan. The scan width of the narrow spectrum is optimized aiming at the maximum signal to noise ratio on the determined CO concentration. These concepts are universal and can be utilized for optical sensing of other gases as well and the sensor was tested under diverse applications e.g. fire detection and combustion optimization.

Keywords

Absorption Line Optical Path Length Narrow Spectrum Harmonic Spectrum Wavelength Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Center for Disease Control and Prevention, Online electronic publication: http://www.cdc.gov/co/faqs.htm (2007)
  2. 2.
    R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, Sens. Actuators, B, Chem. 120, 669 (2007) CrossRefGoogle Scholar
  3. 3.
    J.-C. Nicolas, A.N. Baranov, Y. Cuminal, Y. Rouillard, C. Alibert, Appl. Opt. 37, 7906 (1998) CrossRefADSGoogle Scholar
  4. 4.
    A. Vicet, D. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, A. Baranov, Spectrochim. Acta Part A 58, 2405 (2002) CrossRefADSGoogle Scholar
  5. 5.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003) CrossRefADSGoogle Scholar
  6. 6.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005) CrossRefGoogle Scholar
  7. 7.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000) CrossRefADSGoogle Scholar
  8. 8.
    J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 60, 3243 (2004) CrossRefADSGoogle Scholar
  9. 9.
    L. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, Jr., K. Chance, L. Coudert, V. Dana, V. Devi, J.-M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J.V. Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transfer 96, 139 (2005) CrossRefADSGoogle Scholar
  10. 10.
    M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, Electron. Lett. 42, 640 (2006) CrossRefGoogle Scholar
  11. 11.
    G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, J. Cryst. Growth 301, 941 (2007) CrossRefADSGoogle Scholar
  12. 12.
    A. Bachmann, K. Kashani-Shirazi, T. Lim, O. Dier, C. Lauer, M.-C. Amann, in 20th International Conference on Indium Phosphide and Related Materials, Versailles, France, 2008 Google Scholar
  13. 13.
    J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. Lett. 91, 141105 (2007) CrossRefADSGoogle Scholar
  14. 14.
    S. Schilt, L. Thévenaz, Appl. Opt. 43, 4446 (2004) CrossRefADSGoogle Scholar
  15. 15.
    A. Lytkine, W. Jaeger, J. Tulip, Spectrochim. Acta Part A 63, 940 (2006) CrossRefADSGoogle Scholar
  16. 16.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965) CrossRefADSGoogle Scholar
  17. 17.
    J. Reid, D. Labrie, Appl. Phys. B, Lasers Opt. 26, 203 (1981) CrossRefADSGoogle Scholar
  18. 18.
    J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, Appl. Phys. B, Lasers Opt. 90, 243 (2008) CrossRefADSGoogle Scholar
  19. 19.
    P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta Part B, At. Spectrosc. 56, 1277 (2001) CrossRefADSGoogle Scholar
  20. 20.
    A. Bjorck, Numerical Methods for Least Squares Problems (Society For Industrial and Applied Mathematics, Philadelphia, 1996) CrossRefGoogle Scholar
  21. 21.
    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. B, Lasers Opt. 100 (2010). doi: 10.1007/s00340-010-3973-2
  22. 22.
    D.W. Allan, Proc. IEEE 54, 221 (1966) CrossRefGoogle Scholar
  23. 23.
    P. Werle, R. Muecke, F. Slemr, Appl. Phys. B 57, 131 (1993) CrossRefADSGoogle Scholar
  24. 24.
    European Standard, EN54-26: Fire Detection and Fire Alarm Systems—Part 26: Point Fire Detectors Using Carbon Monoxide Sensors (Beuth, Berlin, 2008) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Chen
    • 1
    • 2
  • A. Hangauer
    • 1
    • 2
  • R. Strzoda
    • 1
  • M.-C. Amann
    • 2
  1. 1.Corporate TechnologySiemens AGMunichGermany
  2. 2.Walter Schottky InstituteTechnical University of MunichGarchingGermany

Personalised recommendations