Applied Physics B

, Volume 101, Issue 1–2, pp 33–44 | Cite as

Active laser frequency stabilization using neutral praseodymium (Pr)

  • S. OppelEmail author
  • G. H. Guthöhrlein
  • W. Kaenders
  • J. von Zanthier


We present a new possibility for the active frequency stabilization of a laser using transitions in neutral praseodymium. Because of its five outer electrons, this element shows a high density of energy levels leading to an extremely line-rich excitation spectrum with more than 25 000 known spectral lines ranging from the UV to the infrared. We demonstrate the active frequency stabilization of a diode laser on several praseodymium lines between 1105 and 1123 nm. The excitation signals were recorded in a hollow cathode lamp and observed via laser-induced fluorescence. These signals are strong enough to lock the diode laser onto most of the lines by using standard laser locking techniques. In this way, the frequency drifts of the unlocked laser of more than 30 MHz/h were eliminated and the laser frequency stabilized to within 1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized diode laser can produce frequency-stable UV-light in the range from 276 to 281 nm. In particular, using a strong hyperfine component of the praseodymium excitation line E=16 502.6167/2 cm\(^{-1}\rightarrow E'=25\,442.742^{\mathrm{o}}_{9/2}\) cm−1 at λ=1118.5397(4) nm makes it possible—after frequency quadruplication—to produce laser radiation at λ/4=279.6349(1) nm, which can be used to excite the D2 line in Mg+.


Diode Laser Praseodymium Frequency Stabilization Hollow Cathode Lamp Extended Cavity Diode Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958) CrossRefADSGoogle Scholar
  2. 2.
    C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991) CrossRefADSGoogle Scholar
  3. 3.
    L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Opt. Commun. 117, 541 (1995) CrossRefADSGoogle Scholar
  4. 4.
    S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molécule d’iode. Laboratoire Aimé-Cotton, CNRS II, Orsay (France), 14000–15600 cm−1 (1978), 15600–17600 cm−1 (1977), 17500–20000 cm−1 (1977) Google Scholar
  5. 5.
    S. Gerstenkorn, J. Vergès, J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode. Laboratoire Aimé-Cotton, CNRS II, Orsay (France), 11000–14000 cm−1 (1982) Google Scholar
  6. 6.
    A.Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P.V. Pokasov, M.N. Skvortsov, S.N. Bagayev, Opt. Commun. 192, 263 (2001) CrossRefADSGoogle Scholar
  7. 7.
    S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kr̂en, K. Nyholm, M. Merimaa, T.E. Ahola, F.-L. Hong, IEEE Trans. Instrum. Meas. 52, 236 (2003) CrossRefGoogle Scholar
  8. 8.
    F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, H. Matsumoto, Opt. Commun. 235, 377 (2004) CrossRefADSGoogle Scholar
  9. 9.
    M.N. Skvortsov, M.V. Okhapkin, A.Yu. Nevsky, S.N. Bagayev, Quantum Electron. 34, 1101 (2004) CrossRefADSGoogle Scholar
  10. 10.
    R.M. Macfarlane, D.P. Burum, R.M. Shelby, Phys. Rev. Lett. 49, 636 (1982) CrossRefADSGoogle Scholar
  11. 11.
    K.D. Böklen, T. Bossert, W. Foerster, H.H. Fuchs, G. Nachtsheim, Z. Phys. A 274, 195 (1975) ADSGoogle Scholar
  12. 12.
    A. Ginibre, Phys. Scr. 23, 260 (1981) CrossRefADSGoogle Scholar
  13. 13.
    A. Ginibre, Thèse Université de Paris-Sud, Centre d’Orsay (1988) Google Scholar
  14. 14.
    G.H. Guthöhrlein, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), unpublished energy levels and transition lines of praseodymium Google Scholar
  15. 15.
    L. Windholz, Technische Universität Graz (Austria), unpublished energy levels and transition lines of praseodymium Google Scholar
  16. 16.
    R. Zalubas, B.R. Borchardt, J. Opt. Soc. Am. 63, 102 (1973) CrossRefGoogle Scholar
  17. 17.
    W.C. Martin, R. Zalubas, L. Hagan, Atomic Energy Levels—the Rare Earth Elements (National Bureau of Standards, Washington, 1978) Google Scholar
  18. 18.
    W.J. Childs, L.S. Goodman, Phys. Rev. A 24, 1342 (1981) CrossRefADSGoogle Scholar
  19. 19.
    T. Kuwamoto, I. Endo, A. Fukumi, T. Hasegawa, T. Horiguchi, Y. Ishida, T. Kobayashi, T. Kondo, T. Takahashi, J. Phys. Soc. Jpn. 65, 3180 (1996) CrossRefADSGoogle Scholar
  20. 20.
    A. Krzykowski, B. Furmann, D. Stefańska, A. Jarosz, A. Kajoch, Opt. Commun. 140, 216 (1997) CrossRefADSGoogle Scholar
  21. 21.
    B. Furmann, Thesis, TU Poznań (1998) Google Scholar
  22. 22.
    A. Krzykowski, Thesis, TU Poznań (1998) Google Scholar
  23. 23.
    D. El Bakkali, Thesis, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), Fakultät für Elektrotechnik (2006) Google Scholar
  24. 24.
    B. Furmann, A. Krzykowski, D. Stefańska, J. Dembczyński, Phys. Scr. 74, 658 (2006) CrossRefADSGoogle Scholar
  25. 25.
    Evaluation program Fitter for hyperfine structure measurements, Helmut-Schmidt-Universität der Bundeswehr Hamburg (Germany), laboratory for experimental physics, unpublished Google Scholar
  26. 26.
    A. Ginibre, private communication to G.H. Guthöhrlein Google Scholar
  27. 27.
    C. Schwedes, E. Peik, J. von Zanthier, A.Y. Nevsky, H. Walther, Appl. Phys. B 76, 143 (2003) CrossRefADSGoogle Scholar
  28. 28.
    A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T.W. Hänsch, T. Schätz, Appl. Phys. B 84, 371 (2006) CrossRefADSGoogle Scholar
  29. 29.
    J.T. Höffges, H.W. Baldauf, W. Lange, H. Walther, J. Mod. Opt. 44, 1999 (1997) CrossRefADSGoogle Scholar
  30. 30.
    V. Batteiger, S. Knünz, M. Herrmann, G. Saathoff, H.A. Schüssler, B. Bernhardt, T. Wilken, R. Holzwarth, T.W. Hänsch, Th. Udem, Phys. Rev. A 80, 022503 (2009) CrossRefADSGoogle Scholar
  31. 31.
    T. Schätz, A. Friedenauer, H. Schmitz, L. Petersen, S. Kahra, J. Mod. Opt. 54, 2317 (2007) CrossRefGoogle Scholar
  32. 32.
    A. Friedenauer, H. Schmitz, J.T. Glückert, D. Porras, T. Schätz, Nat. Phys. 4, 757 (2008) CrossRefGoogle Scholar
  33. 33.
    J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science 325, 1227 (2009) CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glückert, M. Enderlein, T. Huber, T. Schätz, Phys. Rev. Lett. 103, 090504 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Oppel
    • 1
    Email author
  • G. H. Guthöhrlein
    • 2
  • W. Kaenders
    • 3
  • J. von Zanthier
    • 1
  1. 1.Institut für Optik, Information und PhotonikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Fakultät Elektrotechnik, Lasertechnik und WerkstofftechnikHelmut-Schmidt-Universität, Universität der Bundeswehr HamburgHamburgGermany
  3. 3.Toptica Photonics AGGräfelfing (München)Germany

Personalised recommendations