Applied Physics B

, Volume 102, Issue 2, pp 279–291 | Cite as

VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection



Faraday Rotation Spectroscopy (FRS) is a useful technique for quantification of paramagnetic trace gases with significantly higher sensitivity when compared to direct absorption techniques. Our prototype system based on the openPHOTONS sensor core measures the concentration of molecular oxygen (O2) in the A band using a 763-nm vertical cavity surface emitting laser. We provide detailed analysis of two measurement methods based on FRS using the same sensor configuration: one with a modulated magnetic field, and one with a static magnetic field in combination with wavelength modulation. Our spectra signal-to-noise ratios agree well with our simulations via modeling of the FRS signal. For alternating magnetic field, we achieve an equivalent minimum detectable absorption (MDA) of \(8.86\times 10^{-7}/\mathrm{Hz}^{\frac{1}{2}}\) resulting in a minimum detection limit of 30 ppmv⋅m/\(\mathrm{Hz}^{\frac{1}{2}}\) of O2, limited by detector noise and laser noise. For the same system configuration in the static field case, parasitic etalon fringes limited the MDA to \(4.8\times 10^{-6}/\mathrm{Hz}^{\frac{1}{2}}\). In both cases, we describe methods to improve signal-to-noise ratio based on our data and models.


Extinction Ratio Wavelength Modulation Zeeman Splitting Polarizer Quality Minimum Detectable Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Litfin, C.R. Pollock, R.F. Curl, F.K. Tittel, J. Chem. Phys. 72, 12 (1980) CrossRefGoogle Scholar
  2. 2.
    openPHOTONS repository.
  3. 3.
    Alpha Omega Instruments, Oxygen Analyzer—Oxygen Sensor Types.
  4. 4.
    M. Laakso, M. Jalonen, S. Laukkanen, in Proc. Technical Papers of ISA, 2005 Google Scholar
  5. 5.
    G. Di Stefano, Chem. Phys. Lett. 426, 1 (2006) CrossRefGoogle Scholar
  6. 6.
    R. Lewicki, J.H. Doty, R.F. Curl, F.K. Tittel, G. Wysocki, Proc. Natl. Acad. Sci. 106, 31 (2009) CrossRefGoogle Scholar
  7. 7.
    S.G. So, A. Amiri Sani, L. Zhong, F.K. Tittel, G. Wysocki, in Proc. Workshop on Earth and Space Science Applications, 2009 Google Scholar
  8. 8.
    C.D. Boone, F.W. Dalby, I. Ozier, J. Chem. Phys. 113, 19 (2000) CrossRefGoogle Scholar
  9. 9.
    S. So, A.A. Sani, L. Zhong, F. Tittel, G. Wysocki, in Proc. The 8th ACM/IEEE International Conference on Information Processing in Sensor Networks, 2009 Google Scholar
  10. 10.
    R.J. Brecha, L.M. Pedrotti, D. Krause, J. Opt. Soc. Am. B 14, 8 (1997) CrossRefGoogle Scholar
  11. 11.
    R. Brecha, L. Pedrotti, Opt. Express 5, 5 (1999) CrossRefGoogle Scholar
  12. 12.
    D. Richter, A. Fried, P. Weibring, Laser Photon. Rev. 3, 4 (2009) CrossRefGoogle Scholar
  13. 13.
    H. Adams, D. Reinert, P. Kalkert, W. Urban, Appl. Phys. B 34, 4 (1984) CrossRefGoogle Scholar
  14. 14.
    A. Hinz, D. Zeitz, W. Bohle, W. Urban, Appl. Phys. B 36, 1 (1985) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations