Applied Physics B

, Volume 99, Issue 3, pp 477–486 | Cite as

A convenient band-gap interpolation technique and an improved band line-up model for InGaAlAs on InP

  • Y. S. YongEmail author
  • H. Y. Wong
  • H. K. Yow
  • M. Sorel
Open Access


The band-gap energy and the band line-up of InGaAlAs quaternary compound material on InP are essential information for the theoretical study of physical properties and the design of optoelectronics devices operating in the long-wavelength communication window. The band-gap interpolation of In1−xy Ga x Al y As on InP is known to be a challenging task due to the observed discrepancy of experimental results arising from the bowing effect. Besides, the band line-up results of In1−xy Ga x Al y As on InP based on previously reported models have limited success by far. In this work, we propose an interpolation solution using the single-variable surface bowing estimation interpolation method for the fitting of experimentally measured In1−xy Ga x Al y As band-gap data with various degree of bowing using the same set of input parameters. The suggested solution provides an easier and more physically interpretable way to determine not only lattice matched, but also strained band-gap energy of In1−xy Ga x Al y As on InP based on the experimental results. Interpolated results from this convenient method show a more favourable match to multiple independent experiment data sets measured under different temperature conditions as compared to those obtained from the commonly used weighted-sum approach. On top of that, extended framework of the model-solid theory for the band line-up of In1−xy Ga x Al y As/InP heterostructure is proposed. Our model-solid theory band line-up result using the proposed extended framework has shown an improved accuracy over those without the extension. In contrast to some previously reported works, it is worth noting that the band line-up result based on our proposed extended model-solid theory has also shown to be more accurate than those given by Harrison’s model.


GaAs Interpolation Method Band Offset Interpolation Result Interpolation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Allovon, M. Quillec, Proc. Inst. Electr. Eng. 139, 148 (1992) Google Scholar
  2. 2.
    J.C.L. Yong, J.M. Rorison, R.V. Penty, I.H. White, in Tech. Dig. CLEO (2001), p. 479 Google Scholar
  3. 3.
    R. People, K.W. Wecht, K. Alavi, A.Y. Cho, Appl. Phys. Lett. 43, 118 (1983) CrossRefADSGoogle Scholar
  4. 4.
    S.R. Forrest, P.H. Schmidt, R.B. Wilson, M.L. Kaplan, Appl. Phys. Lett. 45, 1199 (1984) CrossRefADSGoogle Scholar
  5. 5.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001) CrossRefADSGoogle Scholar
  6. 6.
    J. Böhrer, A. Krost, D.B. Bimberg, Appl. Phys. Lett. 63, 1918 (1993) CrossRefADSGoogle Scholar
  7. 7.
    D. Olego, T.Y. Chang, E. Silberg, E.A. Caridi, A. Pinczuk, Appl. Phys. Lett. 41, 476 (1982) CrossRefADSGoogle Scholar
  8. 8.
    P. Parayanthal, C.S. Ro, F.H. Pollak, C.R. Stanley, G.W. Wicks, L.F. Eastman, Appl. Phys. Lett. 43, 109 (1983) CrossRefADSGoogle Scholar
  9. 9.
    M. Marques, L.K. Teles, L.G. Ferreira, L.M.R. Scolfaro, J. Furthmuller, F. Bechstedt, Phys. Rev. B 73, 235205 (2006) CrossRefADSGoogle Scholar
  10. 10.
    K. Masu, T. Mishima, S.-i. Hiroi, M. Konagai, K. Takahashi, J. Appl. Phys. 53, 7558 (1982) CrossRefADSGoogle Scholar
  11. 11.
    J.P. Praseuth, M.C. Joncour, J.M. Gerard, P. Henoc, M. Quillec, J. Appl. Phys. 63, 400 (1988) CrossRefADSGoogle Scholar
  12. 12.
    R.F. Kopf, H.P. Wei, A.P. Perley, G. Livescu, Appl. Phys. Lett. 60, 2386 (1992) CrossRefADSGoogle Scholar
  13. 13.
    J.M. Schneider, J.T. Pietralla, H. Heinecke, J. Cryst. Growth 175–176, 184 (1997) CrossRefGoogle Scholar
  14. 14.
    J.I. Davies, A.C. Marshall, M.D. Scott, R.J.M. Griffiths, Appl. Phys. Lett. 53, 276 (1988) CrossRefADSGoogle Scholar
  15. 15.
    G.P. Donati, R. Kaspi, K.J. Malloy, J. Appl. Phys. 94, 5814 (2003) CrossRefADSGoogle Scholar
  16. 16.
    C. Williams, T. Glisson, J. Hauser, M. Littlejohn, J. Electron. Mater. 7, 639 (1978) CrossRefADSGoogle Scholar
  17. 17.
    T. Mei, J. Appl. Phys. 101, 013520 (2007) CrossRefADSGoogle Scholar
  18. 18.
    W.A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977) CrossRefADSGoogle Scholar
  19. 19.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989) CrossRefADSGoogle Scholar
  20. 20.
    J. Minch, S.H. Park, T. Keating, S.L. Chuang, IEEE J. Quantum Electron. 35, 771 (1999) CrossRefADSGoogle Scholar
  21. 21.
    S.L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, New York, 1995) Google Scholar
  22. 22.
    M. Cardona, N.E. Christensen, Phys. Rev. B 37, 1011 (1988) CrossRefADSGoogle Scholar
  23. 23.
    Y.P. Varshni, Physica 34, 149 (1967) CrossRefADSGoogle Scholar
  24. 24.
    D.K. Gaskill, N. Bottka, L. Aina, M. Mattingly, Appl. Phys. Lett. 56, 1269 (1990) CrossRefADSGoogle Scholar
  25. 25.
    C. Bassignana, C.J. Miner, N. Puetz, J. Appl. Phys. 65, 4299 (1989) CrossRefADSGoogle Scholar
  26. 26.
    Y. Takeda, A. Sasaki, Y. Imamura, T. Takagi, J. Appl. Phys. 47, 5405 (1976) CrossRefADSGoogle Scholar
  27. 27.
    T. Pearsall, IEEE J. Quantum Electron. 16, 709 (1980) CrossRefADSGoogle Scholar
  28. 28.
    R. Rinaldi, R. Cingolani, M. Ferrara, L. Tapfer, H. Kunzel, A. Hase, J. Appl. Phys. 73, 898 (1993) CrossRefADSGoogle Scholar
  29. 29.
    Y.-S. Yong, H.-Y. Wong, H.-K. Yow, IEEE J. Quantum Electron. 45, 1302 (2009) CrossRefADSGoogle Scholar
  30. 30.
    X.H. Zhang, S.J. Chua, S.J. Xu, W.J. Fan, J. Appl. Phys. 83, 5852 (1998) CrossRefADSGoogle Scholar
  31. 31.
    S. Adachi, J. Appl. Phys. 53, 8775 (1982) CrossRefADSGoogle Scholar
  32. 32.
    W.J. Keeler, G.A. Keeler, D.A. Harrison, Z.R. Wasilewski, J. Appl. Phys. 83, 2266 (1998) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Y. S. Yong
    • 1
    Email author
  • H. Y. Wong
    • 1
  • H. K. Yow
    • 1
  • M. Sorel
    • 2
  1. 1.Centre for Advanced Devices and Systems, Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia
  2. 2.Optoelectronics Research Group, Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations