Advertisement

Applied Physics B

, Volume 99, Issue 3, pp 415–422 | Cite as

Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process

  • S. Yukutake
  • T. Kawazoe
  • T. Yatsui
  • W. Nomura
  • K. Kitamura
  • M. Ohtsu
Article

Abstract

In this paper, we propose a novel photovoltaic device using P3HT and ZnO as test materials for the p-type and n-type semiconductors, respectively. To fabricate an electrode of this device, Ag was deposited on a P3HT film by RF-sputtering under light illumination (wavelength λ 0=660 nm) while reversely biasing the P3HT/ZnO pn-junction. As a result, a unique granular Ag film was formed, which originated from a phonon-assisted process induced by an optical near-field in a self-organized manner. The fabricated device generated a photocurrent even though the incident light wavelength was as long as 670 nm, which is longer than the long-wavelength cutoff λ c (=570 nm) of the P3HT. The photocurrent was generated in a wavelength-selective manner, showing a maximum at the incident light wavelength of 620 nm, which was shorter than λ 0 because of the Stark effect brought about by the reverse bias DC electric field applied during the Ag deposition.

Keywords

Sapphire Substrate Light Illumination Photovoltaic Device Photocurrent Density Reverse Bias Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A 63, 013806 (2001) CrossRefADSGoogle Scholar
  2. 2.
    Y. Tanaka, K. Kobayashi, Physica E 40, 297 (2007) CrossRefADSGoogle Scholar
  3. 3.
    T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122, 024715 (2005) CrossRefADSGoogle Scholar
  4. 4.
    T. Kawazoe, M. Ohtsu, Y. Inao, R. Kuroda, J. Nanophoton 1, 011595 (2007) CrossRefGoogle Scholar
  5. 5.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008) CrossRefADSGoogle Scholar
  6. 6.
    T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, J. Sel. Top. Quantum Electron. 15, 1380 (2009) CrossRefGoogle Scholar
  7. 7.
    M. Bredol, K. Matras, A. Szatkowski, J. Sanetra, A. Prodi-Schwab, Sol. Energy Mater. Sol. Cells 93, 662 (2009) CrossRefGoogle Scholar
  8. 8.
    X. Ju, F. Wei, K. Varutt, T. Hori, A. Fujii, M. Ozaki, Nanotechnology 19, 435706 (2008) CrossRefADSGoogle Scholar
  9. 9.
    T. Yatsui, W. Nomura, M. Ohtsu, Nano Lett. 5, 2548 (2005) CrossRefADSGoogle Scholar
  10. 10.
    J. Joo, J. Vac. Sci. Technol. A 18, 23 (2000) CrossRefADSGoogle Scholar
  11. 11.
    J. Soederlund, L.B. Kiss, G.A. Niklasson, C.G. Granqvist, Phys. Rev. Lett. 80, 2386 (1998) CrossRefADSGoogle Scholar
  12. 12.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98, 283 (2010) CrossRefADSGoogle Scholar
  13. 13.
    M. Wang, X. Wang, Sol. Energy Mater. Sol. Cells 91, 1782 (2007) CrossRefGoogle Scholar
  14. 14.
    S. Guenes, H. Neugebauer, S. Sariciftci, Chem. Rev. 107, 1324 (2007) CrossRefGoogle Scholar
  15. 15.
    M. Onoda, K. Tada, H. Nakayama, J. Appl. Phys. 86, 2110 (1999) CrossRefADSGoogle Scholar
  16. 16.
    A. Khaliq, F. Xue, K. Varahramyan, Microelectron. Eng. 86, 2312 (2009) CrossRefGoogle Scholar
  17. 17.
    J. Callaway, Phys. Rev. 130, 549 (1963) zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Yukutake
    • 1
  • T. Kawazoe
    • 1
    • 2
  • T. Yatsui
    • 1
    • 2
  • W. Nomura
    • 1
    • 2
  • K. Kitamura
    • 1
    • 2
  • M. Ohtsu
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Information Systems, Graduate School of EngineeringThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Nanophotonic Research Center, Graduate School of EngineeringThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations