Applied Physics B

, Volume 102, Issue 2, pp 331–344 | Cite as

Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments

  • B. Löhden
  • S. Kuznetsova
  • K. Sengstock
  • V. M. Baev
  • A. Goldman
  • S. Cheskis
  • B. Pálsdóttir
Article

Abstract

Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied for the measurements of several molecular species revealing quantitative information about the gas concentration, temperature and chemical reactions in flames. The spectral range of measurements extends from 6200 cm−1 to 6550 cm−1 with the proper choice of the fiber length and by moving an intracavity lens. With a pulsed laser applied in this experiment, the sensitivity to absorption corresponds to an effective absorption path length of 3 km assuming the cavity is completely filled with the sample. For a cw laser, the effective absorption path length is estimated to be 50 km. Absorption spectra of various molecules such as CO2, CO, H2O, H2S, C2H2 and OH were recorded separately in the cell and/or in low-pressure methane and propane flames. The presented measurements demonstrate simultaneous in situ detection of three molecular products of chemical reactions at different flame locations. Variation of the relative strengths of OH absorption lines with the temperature enables the estimation of the local flame temperature. The sensitivity of this laser does not depend on the broadband cavity losses and it can be used for in situ measurements of absorption spectra in hostile environments such as contaminated samples, flames or combustion engines. The presented technique can be applied for various diagnostic purposes, such as in environmental, combustion and plasma research, in medicine and in the determination of stable isotope ratios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Edner, P. Ragnarson, S. Spännare, S. Svanberg, Appl. Opt. 32, 327 (1993) CrossRefADSGoogle Scholar
  2. 2.
    J.U. White, J. Opt. Soc. Am. 32, 285 (1942) CrossRefADSGoogle Scholar
  3. 3.
    A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988) CrossRefADSGoogle Scholar
  4. 4.
    D. Romanini, K.K. Lehmann, J. Chem. Phys. 99, 6287 (1993) CrossRefADSGoogle Scholar
  5. 5.
    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1695 (2006) CrossRefGoogle Scholar
  6. 6.
    L.A. Pakhomycheva, E.A. Sviridenkov, A.F. Suchkov, L.V. Titova, S.S. Churilov, Pis’ma Zh. Eksp. Teor. Fiz. 12, 60 (1970). [JETP Lett. 12, 43 (1970)] Google Scholar
  7. 7.
    T.W. Hänsch, A.L. Schawlow, P.E. Toschek, IEEE J. Quantum Electron. 8, 802 (1972) CrossRefADSGoogle Scholar
  8. 8.
    V.M. Baev, T. Latz, P.E. Toschek, Appl. Phys. B 69, 171 (1999) CrossRefADSGoogle Scholar
  9. 9.
    J. Hünkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Opt. Commun. 176, 417 (2000) CrossRefADSGoogle Scholar
  10. 10.
    A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V.M. Baev, P.E. Toschek, Opt. Commun. 215, 113 (2003) CrossRefADSGoogle Scholar
  11. 11.
    J. Hernandez-Cordero, T.F. Morse, IEICE Trans. Electron. E83C, 371 (2000) Google Scholar
  12. 12.
    Y. Zhang, M. Zhang, W. Jin, H. Ho, M.S. Demokan, X.H. Fang, B. Culshaw, G. Stewart, Opt. Commun. 234, 435 (2004) CrossRefADSGoogle Scholar
  13. 13.
    G. Stewart, P. Shields, B. Culshaw, Meas. Sci. Technol. 15, 1621 (2004) CrossRefADSGoogle Scholar
  14. 14.
    A. Goldman, I. Rahinov, S. Cheskis, B. Löhden, S. Wexler, K. Sengstock, V.M. Baev, Chem. Phys. Lett 423, 147 (2006) CrossRefADSGoogle Scholar
  15. 15.
    L.S. Rothman, I.E. Gordon, A. Barbe, D. ChrisBenner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009) CrossRefADSGoogle Scholar
  16. 16.
    O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, O.V. Gromova, L.-Y. Hao, S.-M. Hu, J. Mol. Spectrosc. 234, 270 (2005) CrossRefADSGoogle Scholar
  17. 17.
    W. Chen, A.A. Kosterev, F.K. Tittel, X. Gao, W. Zhao, Appl. Phys. B 90, 311 (2008) CrossRefADSGoogle Scholar
  18. 18.
    Q. Kou, G. Guelachvili, M.A. Temsamani, M. Herman, Can. J. Phys. 72, 1241 (1994) CrossRefADSGoogle Scholar
  19. 19.
    G. Guelachvili, K.N. Rao, Handbook of infrared standards II with spectral coverage of 1.4 μm–4 μm and 6.2 μm–7.7 μm (Academic Press, San Diego, 1993) Google Scholar
  20. 20.
    K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, J. Opt. Soc. Am. B 13, 2708 (1996) CrossRefADSGoogle Scholar
  21. 21.
    K.A. Keppler, G.Ch. Mellau, S. Klee, B.P. Winnewisser, M. Winnewisser, J. Plíva, K.N. Rao, J. Mol. Spectrosc. 175, 411 (1996) CrossRefADSGoogle Scholar
  22. 22.
    R.E. Hachtouki, J.V. Auwera, J. Mol. Spectrosc. 216, 355 (2002) CrossRefADSGoogle Scholar
  23. 23.
    F.M. Schmidt, A. Foltynowicz, W. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007) CrossRefADSGoogle Scholar
  24. 24.
    S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009) CrossRefGoogle Scholar
  25. 25.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005) CrossRefGoogle Scholar
  26. 26.
    S.G. Cheskis, O.M. Sarkisov, Chem. Phys. Lett. 62, 72 (1979) CrossRefADSGoogle Scholar
  27. 27.
    F. Stoeckel, M.D. Schuh, N. Goldstein, G.H. Atkinson, Chem. Phys. 95, 135 (1985) CrossRefGoogle Scholar
  28. 28.
    B. Ståhlberg, V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, J. Chem. Soc., Faraday Trans. 81, 207 (1985) Google Scholar
  29. 29.
    D.C. Miller, J.J. O’Brien, G.H. Atkinson, J. Appl. Phys. 65, 2645 (1989) CrossRefADSGoogle Scholar
  30. 30.
    S. Shaji, A. Song, M. Li, J.J. O’Brien, L.C. O’Brien, Can. J. Phys. 87, 583 (2009) CrossRefADSGoogle Scholar
  31. 31.
    V.A. Lozovsky, S. Cheskis, A. Kachanov, F. Stoeckel, J. Chem. Phys. 106, 8384 (1997) CrossRefADSGoogle Scholar
  32. 32.
    S. Cheskis, Prog. Energy Comb. Sci. 25, 233 (1999) CrossRefGoogle Scholar
  33. 33.
    I. Rahinov, A. Goldman, S. Cheskis, Appl. Phys. B 81, 143 (2005) CrossRefADSGoogle Scholar
  34. 34.
    A. Goldman, S. Cheskis, Appl. Phys. B 92, 281 (2008) CrossRefADSGoogle Scholar
  35. 35.
    J.H. Miller, A.R. Awtry, M.E. Moses, A.D. Jewell, E.L. Wilson, Proc. Combust. Inst. 29, 2203 (2002) CrossRefGoogle Scholar
  36. 36.
    E.A. Fallows, T.G. Cleary, J.H. Miller, Appl. Opt. 48, 695 (2009) CrossRefADSGoogle Scholar
  37. 37.
    M.U. Alzueta, R. Bilbao, P. Glarborg, Combust. Flame 127, 2234 (2001) CrossRefGoogle Scholar
  38. 38.
    I. Rahinov, A. Goldman, S. Cheskis, Combust. Flame 145, 105 (2006) CrossRefGoogle Scholar
  39. 39.
    S. Cheskis, A. Goldman, Prog. Energy Comb. Sci. 35, 365 (2009) CrossRefGoogle Scholar
  40. 40.
    A. Goldman, I. Rahinov, S. Cheskis, Appl. Phys. B 82, 659 (2006) CrossRefADSGoogle Scholar
  41. 41.
    A. Schocker, K. Kohse-Hoinghaus, A. Brockhinke, Appl. Opt. 44, 6660 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Löhden
    • 1
  • S. Kuznetsova
    • 1
  • K. Sengstock
    • 1
  • V. M. Baev
    • 1
  • A. Goldman
    • 2
  • S. Cheskis
    • 2
  • B. Pálsdóttir
    • 3
  1. 1.Institut für LaserphysikUniversität HamburgHamburgGermany
  2. 2.School of ChemistryTel Aviv UniversityTel AvivIsrael
  3. 3.OFS Fitel DenmarkBrondbyDenmark

Personalised recommendations