Advertisement

Applied Physics B

, Volume 100, Issue 1, pp 195–206 | Cite as

Controlling near-field optical intensities in metal nanoparticle systems by polarization pulse shaping

  • G. PireddaEmail author
  • C. Gollub
  • R. de Vivie-Riedle
  • A. Hartschuh
Article

Abstract

Coherent control of near-fields in the proximity of nanoparticles is a promising tool for shaping the temporal and spatial properties of light at the nano-scale. Numerical simulations on a series of progressively more complex metallic nanoparticle systems were carried out to explore in detail the mechanisms of control. We find that an important element for the controllability of intensity localization is the spatial variation of the phase in the near-field that is due either to the interference between the plane incident wave and the near-field of the nanosystem or to the interference of fields generated by different parts of the nanosystem. For a collection of random nanoparticles we show that it is possible to select the appearance of highly localized hot spots.

Keywords

Genetic Algorithm Control Point Target Function Input Pulse Optical Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fielding, M. Shapiro, T. Baumert, J. Phys. B, At. Mol. Opt. 41, 70201 (2008) Google Scholar
  2. 2.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006) Google Scholar
  3. 3.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 88, 067402 (2002) CrossRefADSGoogle Scholar
  4. 4.
    T. Brixner, F.J. García de Abajo, J. Schneider, W. Pfeiffer, Phys. Rev. Lett. 95, 093901 (2005) CrossRefADSGoogle Scholar
  5. 5.
    T. Brixner, F.J. García de Abajo, J. Schneider, C. Spindler, W. Pfeiffer, Phys. Rev. B 73, 125437 (2006) CrossRefADSGoogle Scholar
  6. 6.
    M.I. Stockman, D.J. Bergman, T. Kobayashi, Phys. Rev. B 69, 054202 (2004) CrossRefADSGoogle Scholar
  7. 7.
    M. Sukharev, T. Seideman, J. Phys. B, At. Mol. Opt. 40, S283 (2007) CrossRefADSGoogle Scholar
  8. 8.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007) CrossRefADSGoogle Scholar
  9. 9.
    P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007) CrossRefGoogle Scholar
  10. 10.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000) CrossRefADSGoogle Scholar
  11. 11.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998) CrossRefADSGoogle Scholar
  12. 12.
    C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, L. Wöste, Science 299, 536 (2003) CrossRefADSGoogle Scholar
  13. 13.
    J.L. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus, Nature 417, 533 (2002) CrossRefADSGoogle Scholar
  14. 14.
    V.I. Prokhorenko, A.M. Nagy, S.A. Waschuk, L.S. Brown, R.R. Birge, R.J. Dwayne Miller, Science 313, 1257 (2006) CrossRefADSGoogle Scholar
  15. 15.
    T.C. Weinacht, J.L. White, P.H. Bucksbaum, J. Phys. Chem. A 103, 10166 (1999) CrossRefGoogle Scholar
  16. 16.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley Longman, Bonn, 1989) zbMATHGoogle Scholar
  17. 17.
    P. Tuchscherer, C. Rewitz, D.V. Voronine, F.J. García De Abajo, W. Pfeiffer, T. Brixner, Opt. Express. 17, 14235 (2009) CrossRefADSGoogle Scholar
  18. 18.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985) CrossRefADSGoogle Scholar
  19. 19.
    H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000) ADSGoogle Scholar
  20. 20.
    J.P. Camden, J.A. Dieringer, Y. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 130, 12616 (2008) CrossRefGoogle Scholar
  21. 21.
    T. Brixner, G. Gerber, Opt. Lett. 26, 557 (2001) CrossRefADSGoogle Scholar
  22. 22.
    T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Appl. Phys. B, Lasers Opt. 65, 779 (1997) CrossRefADSGoogle Scholar
  23. 23.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) CrossRefADSGoogle Scholar
  24. 24.
    A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds.), Carbon Nanotubes. Topics in Applied Physics, vol. 111 (Springer, Berlin, 2008) Google Scholar
  25. 25.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) CrossRefADSGoogle Scholar
  26. 26.
    R. Carminati, Phys. Rev. E 55, R4901 (1997) ADSGoogle Scholar
  27. 27.
    J.-J. Greffet, R. Carminati, Prog. Surf. Sci. 56, 133 (1997) CrossRefADSGoogle Scholar
  28. 28.
    R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000) CrossRefADSGoogle Scholar
  29. 29.
    F.J. García-Vidal, J.B. Pendry, Phys. Rev. Lett. 77, 1163 (1996) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • G. Piredda
    • 1
    Email author
  • C. Gollub
    • 1
  • R. de Vivie-Riedle
    • 1
  • A. Hartschuh
    • 1
  1. 1.Physikalische Chemie, Department ChemieLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations