Applied Physics B

, Volume 100, Issue 1, pp 169–172 | Cite as

External-resonance-enhanced transmission of light through sub-wavelength holes

Article

Abstract

Using plasmonic resonances of metal films, enhanced transmission of light through sub-wavelength holes has been demonstrated. Here we show that external resonances can be employed as well: the transmission of 1.5-μm wavelength light through 600-nm holes is enhanced by a factor of 20 using a Fabry–Pérot arrangement. The maximal enhancement factor is determined by the limited reflectivity of metal surfaces. It seems promising to combine both effects—plasmonic resonances plus tailored photonic-crystal structures on top of the metal film—in order to realize efficient sub-wavelength light sources as they are required for, e.g., advanced spectroscopy and lithography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, A. Thio, T.P. Wolf, Nature 39, 667 (1998) CrossRefADSGoogle Scholar
  2. 2.
    C. Genet, T.W. Ebbesen, Nature 445, 39 (2007) CrossRefADSGoogle Scholar
  3. 3.
    J. Weiner, Rep. Prog. Phys. 72, 064401 (2009) CrossRefADSGoogle Scholar
  4. 4.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002) CrossRefADSGoogle Scholar
  5. 5.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 825 (2003) CrossRefADSGoogle Scholar
  6. 6.
    E. Ozbay, Science 311, 189 (2006) CrossRefADSGoogle Scholar
  7. 7.
    E. Betzig, J.K. Trautman, Science 257, 189 (1992) CrossRefADSGoogle Scholar
  8. 8.
    W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Nano Lett. 4, 1085 (2004) CrossRefADSGoogle Scholar
  9. 9.
    T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, Jpn. J. Appl. Phys. 44, 364 (2005) CrossRefADSGoogle Scholar
  10. 10.
    C. Liu, V. Kamaev, Z.V. Vardenya, Appl. Phys. Lett. 86, 143501 (2005) CrossRefADSGoogle Scholar
  11. 11.
    I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, V. Sandoghdar, Phys. Rev. Lett. 98, 033601 (2007) CrossRefADSGoogle Scholar
  12. 12.
    M. Consonni, J. Hazart, G. Lérondel, A. Vial, J. Appl. Phys. 105, 084308 (2009) CrossRefADSGoogle Scholar
  13. 13.
    A. Partovi, D. Peale, M. Wuttig, C.A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W.S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, J.H.-J. Yeh, Appl. Phys. Lett. 75, 1515 (1999) CrossRefADSGoogle Scholar
  14. 14.
    G. Hernandez, Fabry–Pérot Interferometers (Cambridge University Press, Cambridge, 1988) Google Scholar
  15. 15.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) CrossRefADSGoogle Scholar
  16. 16.
    J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233 (1977) CrossRefADSGoogle Scholar
  17. 17.
    E.E. Whiting, J. Quant. Spectrosc. Radiat. Transf. 8, 1379 (1968) CrossRefADSGoogle Scholar
  18. 18.
    N.N. Lepeshkin, A. Schweinsberg, G. Piredda, R.S. Bennink, Phys. Rev. Lett. 93, 123902 (2004) CrossRefADSGoogle Scholar
  19. 19.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) CrossRefADSGoogle Scholar
  20. 20.
    S. John, Phys. Rev. Lett. 58, 2486 (1987) CrossRefADSGoogle Scholar
  21. 21.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BonnBonnGermany
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations