Skip to main content
Log in

Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a VCSEL-based oxygen sensor applied for real-time combustion optimization in furnaces is presented. A diffuse reflector instead of a spherical mirror is used to avoid alignment problems during thermal cycles the sensor is exposed to in the in-situ measurement. In spite of the signal loss, this concept proves to be suitable for measurements in the exhaust of a gas furnace even if severe condensation at the optic surfaces occurs. The optic cell has a background level in the order of 10−5 in absorbance and is long-term stable. A real-time microcontroller-suited curve fitting algorithm is applied to further improve the long-term stable operation of the whole sensor, because a drift of the spectral background is compensated. Neither absolute wavelength scale, nor absolute wavelength difference between two measurement points is needed for concentration determination. Furthermore, the gas pressure can be simultaneously determined. Kalman filtering is also applied to reduce the concentration measurement noise without losing the reliability and fast response time of the sensor. The techniques applied in the sensor are not limited to oxygen sensing, but also can be applied for sensing of other gas molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Spitznas, H. Link, Siemens building technologies. Private communication (2008)

  2. National Industrial Fuel Efficiency Service LTD, The Boiler Operators Handbook (Graham & Trotman Limited, 1989)

  3. Buderus Heiztechnik GmbH (ed.), Handbuch für Heizungstechnik (Beuth Verlag GmbH, 2002)

  4. E. Logothetis, in Proceedings of the 8th Automotive Materials Conference: Ceramic Engineering and Science Proceedings, vol. 1 (1980), p. 281

  5. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  6. J. Reid, D. Labrie, Appl. Phys. B: Lasers Opt. 26, 203 (1981)

    Article  ADS  Google Scholar 

  7. T. Iseki, H. Tai, K. Kimura, Meas. Sci. Technol. 11, 594 (2000)

    Article  ADS  Google Scholar 

  8. M. Grabherr, D. Wiedenmann, R. Jaeger, R. King, Proc. SPIE 5737, 120 (2005)

    Article  ADS  Google Scholar 

  9. D. Masiyano, J. Hodgkinson, R. Tatam, Appl. Phys. B: Lasers Opt. 90, 279 (2008)

    Article  ADS  Google Scholar 

  10. D. Masiyano, J. Hodgkinson, R.P. Tatam, Appl. Phys. B 100 (2010) This Issue. DOI:10.1007/s00340-010-4020-z. Special Issue of 7th Tunable Diode Laser Spectroscopy Conference

  11. J.W. Goodman, Laser Speckle and Related Phenomena (Springer, Berlin, 1975), Chap. 2

    Google Scholar 

  12. J. Chen, A. Hangauer, R. Strzoda, M. Fleischer, M.C. Amann, Proc. Chem. 1(1), 1383 (2009). Proceedings of the Eurosensors XXIII Conference

    Article  Google Scholar 

  13. K.J. Ritter, T.D. Wilkerson, J. Mol. Spectrosc. 121, 1 (1987)

    Article  ADS  Google Scholar 

  14. L.S. Rothman, et al., J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  15. R. Arndt, J. Appl. Phys. 36, 2522 (1965)

    Article  ADS  Google Scholar 

  16. P. Kluczynski, Å.M. Lindberg, O. Axner, Appl. Opt. 40, 770 (2001)

    Article  ADS  Google Scholar 

  17. A. Hangauer, J. Chen, M.-C. Amann, Appl. Phys. B 90, 249 (2008)

    Article  ADS  Google Scholar 

  18. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Bjorck, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996)

    Google Scholar 

  20. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, New York, 1949)

    MATH  Google Scholar 

  21. R.E. Kalman, Trans. ASME—J. Basic Eng. 35 (1960)

  22. H. Riris, C.B. Carlisle, R.E. Warren, Appl. Opt. 33, 5506 (1994)

    Article  ADS  Google Scholar 

  23. A. Hangauer, A. Spitznas, J. Chen, R. Strzoda, H. Link, M. Fleischer, in Procedia Chemistry, vol. 1 (2009), p. 955. Proceedings of the Eurosensors XXIII conference

  24. P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta Part B: At. Spectrosc. 56, 1277 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Hangauer, A., Strzoda, R. et al. Laser spectroscopic oxygen sensor using diffuse reflector based optical cell and advanced signal processing. Appl. Phys. B 100, 417–425 (2010). https://doi.org/10.1007/s00340-010-3956-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3956-3

Keywords

Navigation