Applied Physics B

, Volume 99, Issue 1–2, pp 47–51 | Cite as

Compact spectroscopy system based on tunable organic semiconductor lasers



We applied a continuously tunable organic semiconductor thin film laser for high resolution transmission spectroscopy. Using a suitable encapsulation application of that low-cost laser device allowed us to realize a very compact and durable measurement system incorporating only very few optical components. To demonstrate the capability of our setup for high-resolution photospectroscopy, we measured the transmission curve of a narrow laser line filter. The resulting data was in good agreement with a measurement of the filter characteristic done using a commercial spectrometer. Our system is capable of measuring optical density (OD) values up to OD 5. A key for future systems is a novel low-cost mechanical tuning method for position-dependent distributed feedback lasers which enables high-speed tuning with wavelength access times under 10 ms independent of the tuning bandwidth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kogelnik, C.V. Shank, Appl. Phys. Lett. 18, 152 (1971) CrossRefADSGoogle Scholar
  2. 2.
    I.D.W. Samuel, G.A. Turnbull, Chem. Rev. 107, 1272 (2007) CrossRefGoogle Scholar
  3. 3.
    S.R. Forrest, Nature 428, 911 (2004) CrossRefADSGoogle Scholar
  4. 4.
    M. Stroisch, T. Woggon, U. Lemmer, G. Bastian, G. Violakis, S. Pissadakis, Opt. Express 15, 3968 (2007) CrossRefADSGoogle Scholar
  5. 5.
    D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, L. Favaretto, Appl. Phys. Lett. 83, 2545 (2003) CrossRefADSGoogle Scholar
  6. 6.
    V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarathy, S.R. Forrest, Y. You, M.E. Thompson, J. Appl. Phys. 84, 4096 (1998) CrossRefADSGoogle Scholar
  7. 7.
    U. Scherf, S. Riechel, U. Lemmer, R.F. Mahrt, Curr. Opin. Solid State Mater. Sci. 5, 143 (2001) CrossRefGoogle Scholar
  8. 8.
    S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A.G. Mückl, W. Brütting, A. Gombert, V. Wittwer, Opt. Lett. 26, 592 (2001) CrossRefADSGoogle Scholar
  9. 9.
    D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Appl. Phys. Lett. 85, 1886 (2004) CrossRefADSGoogle Scholar
  10. 10.
    S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, U. Lemmer, Appl. Phys. B 97, 787 (2009) CrossRefADSGoogle Scholar
  11. 11.
    C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, T. Weimann, IEEE Photonics Technol. Lett. 19, 741 (2007) CrossRefADSGoogle Scholar
  12. 12.
    T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, Appl. Phys. Lett. 88, 241116 (2006) CrossRefADSGoogle Scholar
  13. 13.
    Y. Yang, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 92, 163306 (2008) CrossRefADSGoogle Scholar
  14. 14.
    M. Punke, T. Woggon, M. Stroisch, B. Ebenhoch, U. Geyer, C. Karnutsch, M. Gerken, U. Lemmer, M. Bruendel, J. Wang, T. Weimann, Proc. SPIE 6659, 665909 (2007) CrossRefGoogle Scholar
  15. 15.
    U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, M. Gerken, J. Appl. Phys. 104, 093111 (2008) CrossRefADSGoogle Scholar
  16. 16.
    S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, V. Wittwer, Appl. Phys. B 71, 897 (2000) ADSGoogle Scholar
  17. 17.
    D. Anderson, M. Archard, Varian UV Instrum. Work UV-94 (1992) Google Scholar
  18. 18.
    S. Jordan, Laser Focus World 44(9) (2008) Google Scholar
  19. 19.
    K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, K. Mohri, IEEE Trans. Ind. Appl. IA-21, 595 (1985) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Light Technology Institute and Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations