Advertisement

Applied Physics B

, Volume 100, Issue 1, pp 151–158 | Cite as

Volumetric spectral analysis of materials using terahertz-tomography techniques

  • A. BrahmEmail author
  • M. Kunz
  • S. Riehemann
  • G. Notni
  • A. Tünnermann
Article

Abstract

We present for the first time a system and new algorithms for spectral THz-tomography. The electric field of single cycle ultra short THz-pulses can be measured time resolved in amplitude and phase. By focusing ultra short THz-pulses to a sample and analyzing the transmitted or reflected beams the inner structure of the sample can be investigated with a resolution up to 0.4 mm by evaluating the time resolved data. Thus a spectrum of every scanned THz-pulse can be calculated with the usage of the fast Fourier transform. In contrast to classical computed tomography (CT) with X-rays a higher amount of information can be obtained. Based on the characteristic absorption spectra of varying materials it is now possible to identify different substances inside a sample by terahertz-tomography with probabilities that are higher than 80%.

Keywords

Radon Probe Beam Spectral Information Back Projection Surement Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin, Heidelberg, 2003) Google Scholar
  2. 2.
    R. Beigang, G. Torosyan, C. Rau, B. Pradarutti, M. Theuer, in Conference on Applied Electromagnetics and Communications, Croatia, 2005 Google Scholar
  3. 3.
    J.J. Carey, R.T. Bailey, D. Pugh, J.N. Sherwood, F.R. Cruickshank, K. Wynne, Appl. Phys. Lett. 81, 4335 (2002) CrossRefADSGoogle Scholar
  4. 4.
    M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, Appl. Phys. Lett. 81, 1381 (2002) CrossRefADSGoogle Scholar
  5. 5.
    M. Tani, M. Herrmann, K. Sakai, Meas. Sci. Technol. 13, 1739 (2002) CrossRefADSGoogle Scholar
  6. 6.
    B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, A. Tünnermann, Opt. Express 15, 17652 (2007) CrossRefADSGoogle Scholar
  7. 7.
    M.C. Nuss, P.C.M. Planken, I. Brener, H.G. Roskos, M.S.C. Luo, S.L. Chuang, Appl. Phys. B 58, 249 (1994) CrossRefADSGoogle Scholar
  8. 8.
    D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinmann, Phys. Rev. Lett. 53, 1555 (1984) CrossRefADSGoogle Scholar
  9. 9.
    B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, A. Tünnermann, Appl. Phys. B 85, 59 (2006) CrossRefADSGoogle Scholar
  10. 10.
    D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990) CrossRefADSGoogle Scholar
  11. 11.
    D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M. Koch, Appl. Phys. B 68, 1085 (1999) CrossRefADSGoogle Scholar
  12. 12.
    B. Ferguson, X.C. Zhang, Nat. Mater. 1, 26 (2002) CrossRefADSGoogle Scholar
  13. 13.
    A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham, Mater. Today 11, 18 (2008) CrossRefGoogle Scholar
  14. 14.
    B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, A. Tünnermann, Opt. Commun. 279, 248 (2007) CrossRefADSGoogle Scholar
  15. 15.
    D.M. Mittleman, S. Hunsche, L. Boivin, M.C. Nuss, Opt. Lett. 22, 904 (1997) CrossRefADSGoogle Scholar
  16. 16.
    B. Ferguson, S. Wang, D. Gray, D. Abbot, X.C. Zhang, Opt. Lett. 27, 1312 (2002) CrossRefADSGoogle Scholar
  17. 17.
    S. Wang, X.-C. Zhang, J. Phys. D: Appl. Phys. 37, 1 (2004) CrossRefADSGoogle Scholar
  18. 18.
    S. Wang, B. Ferguson, D. Abbott, X. Zhang, J. Biol. Phys. 29, 247 (2003) CrossRefGoogle Scholar
  19. 19.
    X. Yin, B.W.H. Ng, B. Ferguson, D. Abbott, Digit. Signal Process. 19, 750 (2009) CrossRefGoogle Scholar
  20. 20.
    G.N. Hounsfield, J. Comput. Assist. Tomogr. 4, 665 (1980) CrossRefGoogle Scholar
  21. 21.
    W. Withayachumnankul, B. Ferguson, T. Rainsford, S.P. Mickan, D. Abbott, Electron. Lett. 41 (2005) Google Scholar
  22. 22.
    L. Duvillaret, F. Garet, J. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996) CrossRefGoogle Scholar
  23. 23.
    J. Radon, Sachs. Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. 69, 262 (1917) Google Scholar
  24. 24.
    S.A. Qureshi, S.M. Mirza, M. Arif, in Student Conference on Engineering Sciences and Technology, Pakistan, 2005 Google Scholar
  25. 25.
    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988) zbMATHGoogle Scholar
  26. 26.
    L.A. Shepp, B.F. Logan, IEEE Trans. Nucl. Sci. 21, 21 (1974) CrossRefGoogle Scholar
  27. 27.
    A.L. Cauchy, Oeuvres Complètes: Series 2. Book III (1821), p. 373 Google Scholar
  28. 28.
    P. Gu, M. Tani, S. Kono, K. Sakai, X. Zhang, J. Appl. Phys. 91, 5533 (2002) CrossRefADSGoogle Scholar
  29. 29.
    X. Zhang, B.B. Hu, J.T. Darrow, D.H. Auston, Appl. Phys. Lett. 56, 1011 (1990) CrossRefADSGoogle Scholar
  30. 30.
    M.B. Johnston, D.M. Whittaker, A. Corchia, A.G. Davies, E.H. Linfield, Phys. Rev. B 65, 165301-1 (2002) CrossRefADSGoogle Scholar
  31. 31.
    W.A. Kalender, Phys. Med. Biol. 51, 29 (2006) CrossRefGoogle Scholar
  32. 32.
    X.C. Zhang, Phys. Med. Biol. 47, 3667 (2002) CrossRefGoogle Scholar
  33. 33.
    Y. Wang, Z. Zhao, Z. Chen, L. Zhang, K. Kang, Photonics and optoelectronics meetings. Proc. SPIE 7277, 72770R1 (2008) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Brahm
    • 1
    • 3
    Email author
  • M. Kunz
    • 1
    • 2
  • S. Riehemann
    • 1
  • G. Notni
    • 1
  • A. Tünnermann
    • 1
    • 3
  1. 1.Fraunhofer Institute for Applied Optics and Precision Engineering (IOF)JenaGermany
  2. 2.Institute of PhysicsIlmenau University of TechnologyIlmenauGermany
  3. 3.Institute of Applied PhysicsFriedrich Schiller UniversityJenaGermany

Personalised recommendations