Advertisement

Applied Physics B

, Volume 99, Issue 1–2, pp 325–332 | Cite as

Combined two-dimensional velocity and temperature measurements using a high-speed camera and luminescent particles

  • S. SomeyaEmail author
  • D. Ochi
  • Y. Li
  • K. Tominaga
  • K. Ishii
  • K. Okamoto
Article

Abstract

This paper proposes a combined method for two-dimensional temperature and velocity measurements using temperature sensitive particles (TSParticles), a pulsed ultraviolet (UV) laser and a single high-speed camera. TSParticles were synthesized using ion-exchange particles and Eu(TTA) luminescent dye. The size and material of the particles for synthesizing TSParticles are selectable. TSParticles respond to temperature changes in a flow and can also serve as tracers for the velocity field. TSParticles were seeded into a heated water flow in a complex-shaped channel constructed of MEXFLON resin, which has a refractive index exactly equal to that of water. Particle images of flow beyond the structure can be recorded without any distortion. The TSParticles were excited by the UV pulsed laser and the luminescence from the TSParticles were recorded at 40,000 frames per second as sequential images for a lifetime-based temperature analysis. Another advantage of our approach is that high time-resolved PIV can be carried out without a high-frequency laser. The recorded images were also used for the particle image velocimetry (PIV) calculation.

Keywords

Particle Image Velocimetry Decay Constant Particle Image Velocimetry Measurement Interrogation Window Interrogation Window Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tavoularis, D. Chang, in Proc. 15th ICONE, ICONE15-10389 (2007) Google Scholar
  2. 2.
    T. Uwaba, M. Ito, S. Ukai, M. Pelletier, Nucl. Sci. Technol. 42(7), 608 (2005) CrossRefGoogle Scholar
  3. 3.
    R. Gajapathy, K. Velusamy, P. Selvaraj, P. Chellapandi, S.C. Chetal, Nucl. Eng. Des. 237(24), 2332 (2007) CrossRefGoogle Scholar
  4. 4.
    W. Raza, K.Y. Kim, Nucl. Eng. Des. 238(6), 1332 (2008) CrossRefGoogle Scholar
  5. 5.
    V. Vonka, Nucl. Eng. Des. 106, 209 (1998) CrossRefGoogle Scholar
  6. 6.
    M.H. Chun, K.W. Seo, Ann. Nucl. Energy 28, 1683 (2001) CrossRefGoogle Scholar
  7. 7.
    J. Coppeta, C. Rogers, Exp. Fluids 25, 1 (1998) CrossRefGoogle Scholar
  8. 8.
    J. Sakakibara, R.J. Adrian, Exp. Fluids 26, 7 (1999) CrossRefGoogle Scholar
  9. 9.
    J. Sakakibara, R.J. Adrian, Exp. Fluids 37(3), 331 (2004) CrossRefGoogle Scholar
  10. 10.
    S. Someya, S. Bando, Y. Song, B. Chen, M. Nishio, Int. J. Heat Mass Transfer 8(12), 2508 (2005) CrossRefGoogle Scholar
  11. 11.
    M. Hoffmann, M. Schluter, N. Rabiger, Chem. Eng. Sci. 61, 2968 (2006) CrossRefGoogle Scholar
  12. 12.
    C. Cardenas, R. Suntz, J.A. Denev, H. Bockhorn, Appl. Phys. B 88, 581 (2007) CrossRefADSGoogle Scholar
  13. 13.
    S. Funatani, N. Fujisawa, H. Ikeda, Meas. Sci. Technol. 15, 983 (2004) CrossRefADSGoogle Scholar
  14. 14.
    S.D. Alaruri, A.J. Brewington, M.A. Thomas, J.A. Miller, IEEE Trans. Instrum. Meas. 42(3), 735 (1993) CrossRefGoogle Scholar
  15. 15.
    B. Zelelow, G.E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Sens. Actuators B 96, 304 (2003) CrossRefGoogle Scholar
  16. 16.
    J. Hradil, C. Davis, K. Mongey, C. McDonagh, B.D. MacCraith, Meas. Sci. Technol. 13, 1552 (2002) CrossRefADSGoogle Scholar
  17. 17.
    G. Holst, O. Kohls, I. Klimant, B. Konig, M. Kuhl, T. Richter, Sens. Actuators B 51, 163 (1998) CrossRefGoogle Scholar
  18. 18.
    G. Holst, B. Grunwald, Sens. Actuators B 74, 78 (2001) CrossRefGoogle Scholar
  19. 19.
    A. Omrane, F. Ossler, M. Alden, Exp. Thermal Fluid Sci. 28, 669 (2004) CrossRefGoogle Scholar
  20. 20.
    A. Omrane, G. Sarner, M. Alden, Appl. Phys. B 79, 431 (2004) CrossRefGoogle Scholar
  21. 21.
    A.H. Khalid, K. Kontis, Meas. Sci. Technol 20, 025305 (2009) CrossRefADSGoogle Scholar
  22. 22.
    T. Kissel, E. Baum, A. Dreizler, J. Brubach, Appl. Phys. B (2009). doi: 10.1007/s00340-009-3626-5 Google Scholar
  23. 23.
    S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68(7), 2615 (1997) CrossRefADSGoogle Scholar
  24. 24.
    A.H. Khalid, K. Kontis, Sensors 8, 5673 (2008) CrossRefGoogle Scholar
  25. 25.
    A. Omrane, P. Pettersson, M. Alden, M.A. Linne, Appl. Phys. B 92, 99 (2008) CrossRefADSGoogle Scholar
  26. 26.
    H. Hu, M. Koochesfahani, Meas. Sci. Technol. 17, 1269 (2006) CrossRefADSGoogle Scholar
  27. 27.
    B. Bai, J. Basu, N. Vasantharajan, J. Lumin. 128, 1701 (2008) CrossRefGoogle Scholar
  28. 28.
    M.T. Albelda, E. Garca-Espaa, L. Gil, J.C. Lima, C. Lodeiro, J.S. Melo, M.J. Melo, A.J. Parola, F. Pina, C. Soriano, Phys. Chem. B 107(27), 6573 (2003) CrossRefGoogle Scholar
  29. 29.
    A. Mills, C. Tommons, R.T. Baily, M.C. Tedford, P.J. Crilly, The Analyst 131, 495 (2006) CrossRefADSGoogle Scholar
  30. 30.
    J. Brubach, J. Janicka, A. Dreizler, Opt. Laser Eng 47, 75 (2009) CrossRefGoogle Scholar
  31. 31.
    L.M. Coyle, M. Gouterman, Sens. Actuators B 61, 92 (1999) CrossRefGoogle Scholar
  32. 32.
    S. Nagl, M.I.J. Stich, M. Schaferling, O.S. Wolfbeis, Anal. Bioanal. Chem. 393, 1199 (2009) CrossRefGoogle Scholar
  33. 33.
    D. Ochi, S. Someya, K. Okamoto, H. Ohshima, in Proc. NTHAS6, N6P1155 (2008) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Someya
    • 1
    • 2
    Email author
  • D. Ochi
    • 2
  • Y. Li
    • 2
  • K. Tominaga
    • 2
  • K. Ishii
    • 2
  • K. Okamoto
    • 2
  1. 1.Energy Technology Research Institutes of AISTTsukubaJapan
  2. 2.Department of Human and Engineered Environmental Studies, Graduate School of Frontier ScienceUniversity of TokyoKashiwaJapan

Personalised recommendations