Advertisement

Applied Physics B

, Volume 100, Issue 2, pp 321–329 | Cite as

Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications

  • S. SchiltEmail author
  • K. Zogal
  • B. Kögel
  • P. Meissner
  • M. Maute
  • R. Protasio
  • M.-C. Amann
Article

Abstract

An extensive characterization of the spectral properties of a largely tunable laser in the 1.56-μm spectral range is reported. This device combines a vertical-cavity surface-emitting laser (VCSEL) with a micro-machined (MEMS) Bragg mirror in a very compact arrangement. The large tunability obtained by an electro-thermal actuation of the MEMS mirror makes this device very attractive for high-resolution spectroscopy. Relevant laser parameters for the implementation of wavelength modulation spectroscopy techniques in gas sensing, such as tuning and modulation properties, are presented. A preliminary gas spectroscopy experiment performed with this laser is also shown.

Keywords

Free Spectral Range External Cavity Diode Laser Wavelength Modulation Spectroscopy Large Tunability Laser Frequency Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Scotoni, A. Rossi, D. Bassi, R. Buffa, S. Iannotta, A. Boschetti, Appl. Phys. B 82(3), 495 (2006) CrossRefADSGoogle Scholar
  2. 2.
    M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, P. Meissner, Opt. Lett. 31(21), 3170 (2006) CrossRefADSGoogle Scholar
  3. 3.
    B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, P. Meissner, IEEE Sens. J. 7(11), 1483 (2007) CrossRefGoogle Scholar
  4. 4.
    M. Wippish, K.D. Dessau, Ind. Phys. 9(3), 24 (2003) Google Scholar
  5. 5.
    Q.-V. Nguyen, R.W. Dibble, T. Day, Opt. Lett. 19(24), 2134 (1994) CrossRefADSGoogle Scholar
  6. 6.
    T. Day, in Optical Fiber Communication Conference and Exhibit OFC 2001 (2001), pp. TuJ4-1–TuJ4-3 Google Scholar
  7. 7.
    T. Sato, J. Lightwave Technol. 22(7), 1782 (2004) CrossRefADSGoogle Scholar
  8. 8.
    M. Pushkarsky, M. Weida, T. Day, in Proc. of the Society of Photo-optical Instrumentation Engineers, vol. 6871 (SPIE, Bellingham, 2008), pp. X8711–X8711 Google Scholar
  9. 9.
    G. Wysocki, T. Tsai, S. So, Y. Wang, R. Lewicki, F.K. Tittel, D. Weidmann, Broadly tunable external cavity quantum cascade lasers and applications, in Tunable Diode Laser Spectroscopy Conference, July 13–17 2009, Zermatt, Switzerland, paper L2 Google Scholar
  10. 10.
    C. Affolderbach, G. Mileti, Opt. Lasers Eng. 43(3–5), 291 (2005) CrossRefGoogle Scholar
  11. 11.
    B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, T. Razazzan, IEEE Photonics Technol. Lett 14(10), 1457 (2002) CrossRefADSGoogle Scholar
  12. 12.
    C.-E. Zah, M.R. Amersfoort, B.N. Pathak, F.J. Favire, P.S.D. Lin, N.C. Andreadakis, A.W. Rajhel, R. Bhat, C. Caneau, M.A. Koza, J. Gamelin, IEEE J. Sel. Top. Quantum Electron. 3(12), 584 (1997) Google Scholar
  13. 13.
    B. Kögel, M. Maute, H. Halbritter, F. Riemenschneider, G. Böhm, M.-C. Amann, P. Meissner, J. Opt. A: Pure Appl. Opt. 8, S370 (2006) CrossRefGoogle Scholar
  14. 14.
    F. Riemenschneider, M. Maute, H. Halbritter, G. Boem, M.C. Amann, P. Meissner, IEEE Photonics Technol. Lett. 16(10), 2212 (2004) CrossRefADSGoogle Scholar
  15. 15.
    R. Arndt, J. Appl. Phys. 36(8), 2522 (1965) CrossRefADSGoogle Scholar
  16. 16.
    J. Reid, D. Labrie, Appl. Phys. B 26(3), 203 (1981) CrossRefADSGoogle Scholar
  17. 17.
    G.C. Bjorklund, Opt. Lett. 5(1), 15 (1980) CrossRefADSGoogle Scholar
  18. 18.
    G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, IEEE J. Quantum Electron. 20(9), 1045 (1984) CrossRefGoogle Scholar
  19. 19.
    P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, M.-C. Amann, IEEE J. Quantum Electron. 44(4), 391 (2008) CrossRefADSGoogle Scholar
  20. 20.
    M. Maute, B. Kögel, G. Böhm, P. Meissner, M.-C. Amann, IEEE Photonics Technol. Lett. 18(5), 688 (2006) CrossRefADSGoogle Scholar
  21. 21.
    A. Lytkine, W. Jäger, J. Tulip, Spectrochim. Acta A 63(5), 940 (2006) CrossRefGoogle Scholar
  22. 22.
    A. Lytkine, W. Jäger, J. Tulip, Proc. SPIE 5737, 157 (2005) CrossRefADSGoogle Scholar
  23. 23.
    B. Kögel, K. Zogal, S. Jatta, C. Grasse, M.-C. Amann, G. Cole, M. Lackner, M. Schwarzott, F. Winter, P. Meissner, Proc. SPIE 7266, 72660O (2008). doi: 10.1117/12.816272 CrossRefGoogle Scholar
  24. 24.
    H. Olesen, G. Jacobsen, IEEE J. Quantum Electron. 18(12), 2069 (1982) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Schilt
    • 1
    Email author
  • K. Zogal
    • 2
  • B. Kögel
    • 2
  • P. Meissner
    • 2
  • M. Maute
    • 3
  • R. Protasio
    • 1
  • M.-C. Amann
    • 3
  1. 1.IR Microsystems SA, PSE-CLausanneSwitzerland
  2. 2.Fachgebiet Optische NachrichtentechnikTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Walter Schottky InstitutTechnische Universität MünchenGarchingGermany

Personalised recommendations