Applied Physics B

, Volume 98, Issue 4, pp 839–849 | Cite as

Advanced metal alloy systems for massive high-current photocathodes

  • V. G. TkachenkoEmail author
  • A. I. Kondrashev
  • I. N. Maksimchuk


The physical principles of precise alloying are formulated with the aim of increasing the low quantum efficiency (QE) of suitable simple metals (Mg, Al, Cu) as well as of decreasing their electron work function (e φ) in the UV spectral range. The new approach provides valuable information for elucidating the origin of photoemission enhancement in bulk metal-based alloy systems. Bulk in-situ nanoclustering promises to be the most effective way of producing a much higher QE and a lower e φ in simple metals. In this article we show that the quantum efficiency of the metal-based alloys Mg–Ba, Al–Li, and Cu–BaO is considerably higher than the simple metals Mg, Al, and Cu, respectively.

The spectral characteristics of the Mg–Ba, Al–Li and Cu–BaO systems obey the well-known Fowler square law for a near-free-electron model. The advanced metal alloys systems are promising photocathode materials usable for generation of high brightness electron beams.


Simple Metal Laser Energy Density Electron Work Function Laser Cleaning Metal Alloy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X.J. Wang, T. Srinivasan Rao, K. Batchelor, I. Ben-Zvi, J. Fischer, Nucl. Instrum. Methods A 356, 159 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    X.J. Wang, M. Babzien, K. Batchelor, I. Ben-Zvi, R. Malone, I. Pogorelsky, X. Qui, J. Sheehan, J. Sharitka, T. Srinivasan-Rao, Nucl. Instrum. Methods A 375, 82 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    X.J. Wang, M. Babzien, K. Batchelor, I. Ben-Zvi, R. Malone, I. Pogorelsky, X. Qui, J. Sheehan, J. Sharitka, T. Srinivasan-Rao, IEEE Trans. Nucl. Sci. 32, 1791 (1985) CrossRefGoogle Scholar
  4. 4.
    E. Endruschat, J. Hamisk, H. Loch, H. Niedrig, W. Tornow, in Proc. Techn. Vortrb. Int. Kongr.: Laser & Opto-Electron, Munchen, Dez. 1983 (Berlin, 1984), p. 19 Google Scholar
  5. 5.
    T. Nakajyo, J. Yang, F. Sakai, Y. Aoki, Jpn. J. Appl. Phys. 42, 1470 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    T. Rao, A. Burrill, X.Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F.E. Hannon, C.K. Sinclair, J. Lewellen, D. Feldman, Nucl. Instrum. Methods A 557, 124 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    E. Chevallay, J. Durand, S. Hutchins, G. Suberlucq, M. Wurgel, Nucl. Instrum. Methods A 340, 146 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    D.T. Palmer, X.J. Wang, R.H. Miller, M. Babzien, I. Ben-Zvi, C. Pellegrini, J. Sheehan, J. Skaritka, H. Winick, M. Woodle, V. Yakimenko, in Proc. 17th IEEE Particle Accelerator Conference (PAC 97). Accelerator Science, Technology and Applications, vol. 3, Vancouver, British Columbia, Canada, 12–16 May (1997), p. 2687 Google Scholar
  9. 9.
    X.J. Wang, M. Babzien, R. Malone, Z. Wu, in Proc. LINAC02, Gyeongju, Korea (2002), p. 142 Google Scholar
  10. 10.
    M. Boussoukaya, H. Bergeret, R. Chehab, B. Leblond, J. Le Duff, Nucl. Instrum. Methods A 279, 405 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    L. Ding, Y. Chen, Z.Y. Hua, J. Nucl. Mater. 200(3), 305 (1993) CrossRefGoogle Scholar
  12. 12.
    R. Weismann, K. Muller, Surf. Sci. Rep. 1, 251 (1981) CrossRefGoogle Scholar
  13. 13.
    J. Yang, T. Kondoh, Y. Yoshida, S. Tagawa, Jpn. J. Appl. Phys. 44, 8702 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    V.G. Tkachenko, I.N. Maksimchuk, P.Yu. Volosevich, N.K. Lashuk, A.N. Malka, V.V. Friezel, High Temp. Mater. Process. 25(1–2), 97 (2006) Google Scholar
  15. 15.
    V.G. Tkachenko, I.I. Schuljak, A.M. Strutinski, Activation analysis of the structural clustering transformations in metal hydride–forming system, in Hydrogen Materials Science and Chemistry of Metal Hydrides, ed. by N. Veziroglu et al. (Kluwer, Amsterdam, 2002), p. 77 Google Scholar
  16. 16.
    V.G. Tkachenko, A.I. Kondrashev, V.I. Lazorenko, G.V. Lashkarev, V.I. Trefilov, Phys. Dokl. 44(8), 548 (1999) (Translated from Dokl. Akad. Nauk 367(4–6) 1999) ADSGoogle Scholar
  17. 17.
    L. Armand, J.L. Bouillot, L. Gaudart, Surf. Sci. 86, 75 (1979) ADSCrossRefGoogle Scholar
  18. 18.
    R.H. Fowler, Phys. Rev. 38, 45 (1931) ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    A.H. Sommer, Photoemissive Materials: Preparation, Properties, and Uses (Wiley, New York, 1968) Google Scholar
  20. 20.
    L. Cultrera, G. Gatti, P. Miglietta, F. Tazzioli, A. Perrone, Nucl. Instrum. Methods A 587, 7 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    V. Nassisi, A. Donateo, L. Martina, G. Raganato, in Proceedings of the 7th European Particle Accelerator Conference, ed. by J.L. Laclare, W. Mitaroff, Ch. Petit-Jenaz, J. Poole, M. Regler, Austria Center Vienna, 26–30 June (2000), p. 2364 Google Scholar
  22. 22.
    T. Srinivasan-Rao, J. Fischer, T. Tsang, J. Appl. Phys. 69, 3291 (1991) ADSCrossRefGoogle Scholar
  23. 23.
    T. Srinivasan-Rao, I. Ben-Zvi, J. Smedley, X.J. Wang, M. Woodle, in IEEE (1998), p. 2790 Google Scholar
  24. 24.
    P.I. Feibelman, Prog. Surf. Sci. 12, 287 (1982) ADSCrossRefGoogle Scholar
  25. 25.
    S.R. Barman, Phys. Rev. B 57(11), 6662 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    W.J. Pardee, Phys. Rev. B 11(10), 3614 (1975) ADSCrossRefGoogle Scholar
  27. 27.
    V.G. Tkachenko, I.N. Maksimchuk, V.V. Shklover, Appl. Phys. A: Mater. Sci. Process. 62(3), 285 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    S.W. Downey, L.A. Builta, D.C. Moir, T.J. Ringler, J.D. Saunders, Appl. Phys. Lett. 49, 911 (1986). doi: 10.1063/1.97532 ADSCrossRefGoogle Scholar
  29. 29.
    M. Cardonna, L. Ley, in Photoemission in Solids 1, ed. by M. Cardonna, L. Ley (Springer, New York, 1978), p. 22 Google Scholar
  30. 30.
    C.N. Berglund, W.E. Spicer, Phys. Rev. A 136, 1044 (1964) ADSCrossRefGoogle Scholar
  31. 31.
    B.B. Shishkin, I. Buribaev, Radiotekh. Elektron. 19(9), 1948 (1974) Google Scholar
  32. 32.
    T. Kasuya, in Magnetism, ed. by G.T. Rado, vol. 2B (Academic Press, London, 1966), p. 215 Google Scholar
  33. 33.
    W.E. Spicer, A. Herrera-Gomes, Modern theory and applications of photocathodes. In Proceedings of Int. Sympos. on Optics, Imaging and Instrumentation, San Diego, CA, July (1993) Google Scholar
  34. 34.
    A. di Bona, F. Sabary, S. Valeri, P. Michelato, D. Sertore, J. Appl. Phys. 80, 5 (1996) Google Scholar
  35. 35.
    C.H. Lee, P.E. Oettinger, E.R. Pugh, R. Klinkowstein, J.H. Jacob, J.S. Fraser, R.L. Sheffield, IEEE Trans. Nucl. Sci. NS-32(3), 3045 (1985) ADSCrossRefGoogle Scholar
  36. 36.
    D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, P. Michelato, Nucl. Instrum. Methods A 445, 422 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. G. Tkachenko
    • 1
    Email author
  • A. I. Kondrashev
    • 2
  • I. N. Maksimchuk
    • 1
  1. 1.International Center for Electronic Materials Science and Applied Problems of Airspace Technology (ICEMS)KyivUkraine
  2. 2.Frantsevich Institute for Problems of Materials Science (IPMS) NAS of UkraineKyivUkraine

Personalised recommendations