Advertisement

Applied Physics B

, Volume 100, Issue 2, pp 367–376 | Cite as

Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

  • B. LinsEmail author
  • P. Zinn
  • R. Engelbrecht
  • B. Schmauss
Article

Abstract

A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

Keywords

Shot Noise Quantization Noise Direct Absorption Scanning Frequency Relative Intensity Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.W. Sigrist, R. Barlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wächter, Appl. Phys. B 90, 289 (2008) CrossRefADSGoogle Scholar
  2. 2.
    P.A. Martin, Chem. Soc. Rev. 31, 201 (2002) CrossRefGoogle Scholar
  3. 3.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2034 (2003) CrossRefADSGoogle Scholar
  4. 4.
    M.R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lecicki, F.K. Tittel, J. Breath Res. 1, 014001 (2007) CrossRefADSGoogle Scholar
  5. 5.
    L. Gianfrani, G. Gagliardi, M. van Burgel, E.R.Th. Kerstel, Opt. Express 11, 1566 (2003) CrossRefADSGoogle Scholar
  6. 6.
    M. Andersson, L. Persson, T. Svensson, S. Svanberg, Rev. Sci. Instrum. 78, 113107 (2007) CrossRefADSGoogle Scholar
  7. 7.
    S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Appl. Phys. B 92, 393 (2008) CrossRefADSGoogle Scholar
  8. 8.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002) CrossRefADSGoogle Scholar
  9. 9.
    T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B 90, 345 (2008) CrossRefADSGoogle Scholar
  10. 10.
    L. Schuchman, IEEE Trans. Instrum. Meas. 12, 162 (1964) Google Scholar
  11. 11.
    P. Carbone, D. Petri, IEEE Trans. Instrum. Meas. 43, 389 (1994) CrossRefGoogle Scholar
  12. 12.
    M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40, 2031 (2001) CrossRefADSGoogle Scholar
  13. 13.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965) CrossRefADSGoogle Scholar
  14. 14.
    P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Spectrochim. Acta A 56, 1277 (2001) CrossRefADSGoogle Scholar
  15. 15.
    R. Engelbrecht, Spectrochim. Acta A 60, 3291 (2004) CrossRefADSGoogle Scholar
  16. 16.
    U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2007) Google Scholar
  17. 17.
    J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233 (1977) CrossRefADSGoogle Scholar
  18. 18.
    M. Johnson, Photodetection and Measurement (McGraw-Hill, New York, 2003) Google Scholar
  19. 19.
    W.C. Van Etten, Introduction to Random Signals and Noise (Wiley, Chichester, 2005) CrossRefGoogle Scholar
  20. 20.
    D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, Upper Saddle River, 1998) Google Scholar
  21. 21.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1991) Google Scholar
  22. 22.
    E. Milotti, arXiv:physics/0204033 (2002)
  23. 23.
    J. Timmer, M. König, Astron. Astrophys. 300, 707 (1995) ADSGoogle Scholar
  24. 24.
    G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 2002) CrossRefGoogle Scholar
  25. 25.
    G.B. Clayton, S. Winder, G. Clayton, Operational Amplifiers (Newnes, Oxford, 2003) Google Scholar
  26. 26.
    S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits (McGraw-Hill, New York, 2002) Google Scholar
  27. 27.
    J. Candy, O. Benjamin, IEEE Trans. Commun. 29, 1316 (1981) CrossRefGoogle Scholar
  28. 28.
    K. Hejn, A. Pacut, IEEE Trans. Instrum. Meas. 45, 41 (1996) CrossRefGoogle Scholar
  29. 29.
    P.C.D. Hobbs, Building Electro-Optical Systems: Making it All Work (Wiley, New York, 2000) CrossRefGoogle Scholar
  30. 30.
    J. Potzick, Rev. Sci. Instrum. 70, 2038 (1999) CrossRefADSGoogle Scholar
  31. 31.
    L. Krause, Measurement 39, 681 (2006) CrossRefGoogle Scholar
  32. 32.
    P.C.D. Hobbs, Appl. Opt. 36, 903 (1997) CrossRefADSGoogle Scholar
  33. 33.
    R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel, R.F. Curl, Appl. Opt. 40, 4387 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Lins
    • 1
    • 2
    Email author
  • P. Zinn
    • 2
  • R. Engelbrecht
    • 1
    • 2
  • B. Schmauss
    • 1
    • 2
  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Universitaet Erlangen-NuernbergErlangenGermany
  2. 2.Lehrstuhl fuer Hochfrequenztechnik (LHFT)Universitaet Erlangen-NuernbergErlangenGermany

Personalised recommendations