Applied Physics B

, Volume 100, Issue 2, pp 253–260 | Cite as

Time-resolved spectral characteristics of external-cavity quantum cascade lasers and their application to stand-off detection of explosives

  • B. HinkovEmail author
  • F. Fuchs
  • Q. K. Yang
  • J. M. Kaster
  • W. Bronner
  • R. Aidam
  • K. Köhler
  • J. Wagner


We present the time-resolved spectral analysis of the settling process in a pulsed external-cavity quantum-cascade laser (EC-QC laser) emitting in the wavelength range around 7.4 μm. Due to mode competition between the two cavities formed by the laser-chip on one hand and the external-cavity on the other hand, a time-dependent spectral emission on a ns time-scale can be observed. Depending on the spectral characteristic of the external cavity with respect to the chip gain curve time-delays of the external cavity emission of 15–35 ns within the 100 ns drive pulse can be observed.

Regarding the application, we discuss the results in the context of using the EC-QC laser system together with a high-performance IR-camera for stand-off detection of surface-contaminations with explosives such as TNT. The detected densities can be as small as 10 μg/cm2 corresponding to traces left by a fingerprint.


Quantum Cascade Laser Internal Cavity External Cavity Laser Speckle External Cavity Quantum Cascade Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5(4), 707 (1971) Google Scholar
  2. 2.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994) CrossRefADSGoogle Scholar
  3. 3.
    Y. Bai, S. Slivken, S. Darvish, M. Razeghi, Appl. Phys. Lett. 93, 021103 (2008) CrossRefADSGoogle Scholar
  4. 4.
    J. Wagner, N. Schulz, B. Rösener, M. Rattunde, Q. Yang, F. Fuchs, C. Manz, W. Bronner, C. Mann, K. Köhler, M. Raab, E. Romasev, H.D. Tholl, in Proc. SPIE—Technologies for Optical Countermeasures V, vol. 7115 (2008) Google Scholar
  5. 5.
    S. Hugger, F. Fuchs, R. Aidam, W. Bronner, R. Lösch, Q. Yang, N. Schulz, J. Wagner, E. Romasew, M. Raab, H.D. Tholl, in Proc. SPIE—Security and Defence, vol. 7325(17) (2009) Google Scholar
  6. 6.
    J. Wagner, S. Hugger, B. Rösener, F. Fuchs, M. Rattunde, Q. Yang, W. Bronner, R. Aidam, K. Köhler, M. Raab, E. Romasew, H.D. Tholl, in Proc. SPIE—Europe Security and Defence, vol. 7483(14) (2009) Google Scholar
  7. 7.
    G. Wysocki, R. Lewicki, R.F. Curl, F.K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, J. Faist, Appl. Phys. B 92(3), 305 (2008) CrossRefADSGoogle Scholar
  8. 8.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, Appl. Phys. B, Lasers Opt. 90, 165 (2008) CrossRefADSGoogle Scholar
  9. 9.
    I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, C.K. Patel, Appl. Opt. 46(25), 6397 (2007) CrossRefADSGoogle Scholar
  10. 10.
    T. Day, M. Weida, D. Arnone, S. Crivello, D. Caffey, V. Cook, R. Pritchett, in Proc. of SPIE, vol. 7222 (2009) Google Scholar
  11. 11.
    C.W. van Neste, L.R. Senesac, T. Thundat, Appl. Phys. Lett. 92(23), 234102 (2008) CrossRefADSGoogle Scholar
  12. 12.
    R. Furstenberg, C.A. Kendziora, J. Stepnowski, S.V. Stepnowski, M. Rake, M.R. Papantonakis, V. Nguyen, G.K. Hubler, R.A. McGill, Appl. Phys. Lett. 93, 224103 (2008) CrossRefADSGoogle Scholar
  13. 13.
    M. Gaft, L. Nagli, in Proc. of SPIE—Electro-Optical Remote Sensing, Detection and Photonic Technologies and their Applications, vol. 6739 (2007), p. 73903 Google Scholar
  14. 14.
    S. Wallin, A. Petterson, H. Östmark, A. Hobro, Anal. Bioanal. Chem. 395(2), 259 (2009) CrossRefGoogle Scholar
  15. 15.
    B. Hinkov, F. Fuchs, J.M. Kaster, Q. Yang, W. Bronner, R. Aidam, K. Köhler, Broad band tunable quantum cascade lasers for stand-off detection of explosives. Proc. SPIE, vol. 7484(5) (2009) Google Scholar
  16. 16.
    S.Y. Zhang, D.G. Revin, J.W. Cockburn, K. Kennedy, A.B. Krysa, M. Hopkinson, λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers. Appl. Phys. Lett. 94(3), 031106 (2009) Google Scholar
  17. 17.
    Q.K. Yang, C. Manz, W. Bronner, N. Lehmann, F. Fuchs, K. Köhler, J. Wagner, Appl. Phys. Lett. 90, 121134 (2007) CrossRefADSGoogle Scholar
  18. 18.
    Q. Yang, R. Lösch, W. Bronner, S. Hugger, F. Fuchs, R. Aidam, J. Wagner, Appl. Phys. Lett. 93, 251110 (2008) CrossRefADSGoogle Scholar
  19. 19.
    D. Hofstetter, M. Beck, T. Aellen, J. Faist, Appl. Phys. Lett. 78(4), 396 (2001) CrossRefADSGoogle Scholar
  20. 20.
    B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, Current- and temperature-induced beam steering in 7.8 μm emitting quantum-cascade lasers. J. Quantum Electron. 44(11) (2008) Google Scholar
  21. 21.
    A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, E. Gini, Appl. Phys. Lett. 95(6), 061103 (2009) CrossRefADSGoogle Scholar
  22. 22.
    R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Richie, R.C. Lotti, F. Rossi, Nature 417, 156 (2002) CrossRefADSGoogle Scholar
  23. 23.
    A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Magnetic-filed-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photonics 3 (2009) Google Scholar
  24. 24.
    G. Scalari, M.I. Amanti, M. Fischer, R. Terazzi, C. Walther, M. Beck, J. Faist, Appl. Phys. Lett. 94(4), 041114 (2009) CrossRefADSGoogle Scholar
  25. 25.
    M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295(5553), 301 (2002) CrossRefADSGoogle Scholar
  26. 26.
    F. Fuchs, B. Kirn, C. Mann, Q. Yang, W. Bronner, B. Raynor, K. Köhler, J. Wagner, in Proc. of SPIE, Optical Methods in the Life Sciences, vol. 6386 (2006) Google Scholar
  27. 27.
    J. Faist, M. Beck, T. Aellen, Appl. Phys. Lett. 78(2), 147 (2001) CrossRefADSGoogle Scholar
  28. 28.
    F. Fuchs, B. Hinkov, S. Hugger, J.M. Kaster, R. Aidam, W. Bronner, K. Köhler, Q. Yang, K. Degreif, F. Schnürer, W. Schweikert, in Proc. SPIE—Photonics West, vol. 7608(8) (2010) Google Scholar
  29. 29.
    B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, Appl. Phys. Lett. 94(22) (2009) Google Scholar
  30. 30.
    R. Maulini, M. Beck, J. Faist, E. Gini, Appl. Phys. Lett. 84(10), 1659 (2004) CrossRefADSGoogle Scholar
  31. 31.
    Q. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, Rate equation of an external cavity quantum cascade laser (2009, in preparation) Google Scholar
  32. 32.
    R.F. van Ligten, Speckle removal and improvement in optical slicing in holography, vols. 1, 2. Nouv. Rev. Opt. Appl. (1970) Google Scholar
  33. 33.
    S. Lowenthal, D. Joyeux, J. Opt. Soc. Am. 61, 847 (1971) CrossRefADSGoogle Scholar
  34. 34.
    M. Bashkansky, J. Reintjes, Opt. Lett. 25(8), 545 (2000) CrossRefADSGoogle Scholar
  35. 35.
    V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, S. An, Appl. Opt. 48(1), 80 (2009) CrossRefADSGoogle Scholar
  36. 36.
    G. Bunte, M. Heil, D. Röseling, J. Hürttlen, H. Pontius, H. Krause, Propellants Explos. Pyrotech. 34, 245 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Hinkov
    • 1
    Email author
  • F. Fuchs
    • 1
  • Q. K. Yang
    • 1
  • J. M. Kaster
    • 1
  • W. Bronner
    • 1
  • R. Aidam
    • 1
  • K. Köhler
    • 1
  • J. Wagner
    • 1
  1. 1.Fraunhofer Institute for Applied Solid State Physics (IAF)FreiburgGermany

Personalised recommendations