Applied Physics B

, Volume 98, Issue 4, pp 851–855

Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams

Article

Abstract

We calculated the second-harmonic wave pattern induced by focused cylindrically symmetric, polarized vector beams. The second-order nonlinear polarization was expressed for fundamental electric field components passed through a dielectric interface based on vector diffraction theory. Furthermore, the second-harmonic wave pattern was represented on the basis of the far-field approximate expression derived from the formulation of higher-order harmonic generation including a Green’s function. For a (110) zinc selenide crystal, the calculated forward emission patterns of the second-harmonic wave were eight-figure shaped as observed in experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. Zhan, Adv. Opt. Photon 1, 1 (2009) CrossRefGoogle Scholar
  2. 2.
    K.S. Youngworth, T.G. Brown, Opt. Express 7, 77 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Niziev, A.V. Nesterov, J. Phys. D 32, 1455 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    H. Kawauchi, K. Yonezawa, Y. Kozawa, S. Sato, Opt. Lett. 32, 1839 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    C.J.R. Sheppard, A. Choudhury, Appl. Opt. 43, 4322 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    S. Sato, Y. Kozawa, J. Opt. Soc. Am. A 26, 142 (2009) CrossRefGoogle Scholar
  7. 7.
    H.E. Helseth, Opt. Commun. 212, 343 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Phys. Rev. Lett. 86, 5251 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    B. Hao, J. Leger, Opt. Express 15, 3550 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G.H. Döhler, D. Driscoll, M. Hanson, A.C. Gossard, S.F. Pereira, J. Appl. Phys. 100, 023112 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, Phys. Rev. Lett. 90, 013903 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    D.P. Biss, T.G. Brown, Opt. Lett. 28, 923 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kozawa, S. Sato, J. Opt. Soc. Am. B 25, 175 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    B. Richards, E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959) ADSMATHCrossRefGoogle Scholar
  15. 15.
    D.P. Biss, T.G. Brown, Opt. Express 9, 490 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    H.P. Wagner, M. Kühnelt, W. Langbein, J.M. Hvam, Phys. Rev. B 58, 10494 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    J.-X. Cheng, X.S. Xie, J. Opt. Soc. Am. B 19, 16040 (2002) Google Scholar
  18. 18.
    S. Carrasco, B.E.A. Saleh, M.C. Teich, J.T. Fourkas, J. Opt. Soc. Am. B 23, 21341 (2006) CrossRefGoogle Scholar
  19. 19.
    V. Delaubert, M. Lassen, D.R.N. Pulford, H.-A. Bachor, C.C. Harb, Opt. Express 15, 5815 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, Opt. Lett. 32, 1468 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations