Applied Physics B

, Volume 99, Issue 1–2, pp 247–255 | Cite as

Investigation of beam characteristics in toric unstable optical resonator

Article

Abstract

In this paper the characteristics of the output beam of a toric unstable resonator are investigated. Based on the Fresnel–Kirchhof integral and using numerical methods, the performance of toric unstable resonators is simulated and its output beam characteristics are also evaluated. Geometrical resonator parameters, i.e. Fresnel number and magnification as well as the output coupler diameter, are considered in this investigation. The radial and azimuthal modes of the resonator are calculated and the modal behavior of the resonator is described according to geometrical parameters. The power extraction for each specific laser mode has also been inspected by calculating the finesse factor. Using an iteration mode convergence diagram, the mode discrimination of the resonator is investigated.

PACS

42.60.Da 42.60.Jf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Hodgson, H. Weber, Laser Resonators and Beam Propagation (Springer, New York, 2005) Google Scholar
  2. 2.
    D. Jun, A. Rapaport, M. Bass, F. Szipocs, K. Ueda, Phys. Stat. Sol. A 202, 2565 (2005) CrossRefADSGoogle Scholar
  3. 3.
    A. Rapaport, S. Zhao, G. Xiao, A. Howard, M. Bass, Appl. Opt. 41, 7052 (2002) CrossRefADSGoogle Scholar
  4. 4.
    S. Kawato, K. Sueda, T. Kobayashi, Rev. Laser Eng. 33, 236 (2005) Google Scholar
  5. 5.
    M. Endo, S. Yamaguchi, T. Uchiyama, T. Fujioka, J. Phys. D, Appl. Phys. 34, 68 (2001) ADSGoogle Scholar
  6. 6.
    A.P. Zaikin, Quantum Electron. 31, 634 (2001) CrossRefADSGoogle Scholar
  7. 7.
    A. Duncan, J.G. Xin, D.R. Hall, Proc. SPIE 1224, 312 (1990) CrossRefADSGoogle Scholar
  8. 8.
    A.E. Siegman, Lasers (University Science Book, Mill Valley, 1986) Google Scholar
  9. 9.
    S. Xiaojian, W. Yuanzhang, J. Yunqing, H. Yukun, Rev. Sci. Instrum. 70, 3869 (1999) CrossRefGoogle Scholar
  10. 10.
    X. Shu, Y. Wang, Y. Jiang, Z. Zhang, W. Ding: Nucl. Instrum. Methods Phys. Res. A 407, 76 (1998) CrossRefGoogle Scholar
  11. 11.
    D. Ehrlichmann, U. Habich, H.D. Plum, J. Phys. D, Appl. Phys. 26, 183 (1993) ADSGoogle Scholar
  12. 12.
    N. Miakawa, N. Ohtani, S. Yamaguchi, T. Fujioka, Jpn. J. Appl. Phys. 47, 7152 (2008) CrossRefADSGoogle Scholar
  13. 13.
    T.R. Ferguson, M.E. Smithers, Appl. Opt. 23, 2122 (1984) CrossRefADSGoogle Scholar
  14. 14.
    E.F. Yelden, H.J.J. Seguin, C.E. Capjack, S.K. Nikumb, H.H. Reshef, Appl. Opt. 31, 1965 (1992) CrossRefADSGoogle Scholar
  15. 15.
    M.H. Mahdieh, M. Shirmahi, M. Mosavi, Opt. Laser Technol. 39, 669 (2007) CrossRefADSGoogle Scholar
  16. 16.
    G.T. McNice, V.E. Derr, IEEE J. Quantum Electron. 12, 569 (1969) CrossRefADSGoogle Scholar
  17. 17.
    M.H. Mahdieh, M. Shirmahi, J. Opt. Commun. 281, 121 (2008) ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations