Applied Physics B

, Volume 99, Issue 1–2, pp 67–74 | Cite as

Circularly polarized localized near-field radiation at the nanoscale

  • E. Öğüt
  • G. Kızıltaş
  • K. ŞendurEmail author


Diffraction-limited circularly polarized electromagnetic radiation has been widely used in the literature for various applications at both optical and microwave frequencies. With advances in nanotechnology, emerging plasmonic nano-optical applications, such as all-optical magnetic recording, require circularly polarized electromagnetic radiation beyond the diffraction limit. In this study, a plasmonic cross-dipole nano-antenna is investigated to obtain a circularly polarized near-field optical spot with a size smaller than the diffraction limit of light. A cross-dipole nano-antenna is composed of four metallic nano-rods placed at a perpendicular orientation with respect to each other. The performance of the nano-antenna is investigated through numerical simulations. In the first part of this study, the nano-antenna is illuminated with a diffraction-limited circularly polarized radiation. An optimal antenna geometry is specified to obtain an intense optical spot that satisfies two necessary conditions for circular polarization: a phase difference of 90° and a unit amplitude ratio between the electric field components in the vicinity of the antenna gap. In the second part of this study, the nano-antenna is illuminated with diffraction-limited linearly polarized radiation. It is shown that the phase difference between the electric field components can be adjusted by selecting either different antenna lengths or different gap distances in the vertical and horizontal directions. Due to the relatively short wavelength of surface plasma waves on the antenna, it is demonstrated that the phase difference can be sufficient to obtain circularly polarized light. An optimal physical configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain a circularly polarized optical spot beyond the diffraction limit from diffraction-limited linearly polarized radiation.


Phase Difference Polarization Angle Circular Polarization Diffraction Limit Dipole Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Volakis, Antenna Engineering Handbook (McGraw-Hill, New York, 2007) Google Scholar
  2. 2.
    J.M. Kikkawa, D.D. Awschalom, Science 287, 473 (2000) CrossRefADSGoogle Scholar
  3. 3.
    S. Neale, M. Macdonald, K. Dholakia, T.F. Krauss, Nature 4, 530 (2005) CrossRefGoogle Scholar
  4. 4.
    Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Whu, Opt. Express 15, 622 (2007) CrossRefADSGoogle Scholar
  5. 5.
    R. Hassey, E.J. Swain, N.I. Hammer, D. Venkataraman, M.D. Barnes, Science 314, 1437 (2006) CrossRefADSGoogle Scholar
  6. 6.
    X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nature 2, 361 (2007) Google Scholar
  7. 7.
    N. Yu, Q.Y. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, Appl. Phys. Lett. 94, 151101 (2009) CrossRefADSGoogle Scholar
  8. 8.
    C.D. Stanciu, F. Hansteen, A.V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007) CrossRefADSGoogle Scholar
  9. 9.
    J. Hohlfeld, C.D. Stanciu, A. Rebei, Appl. Phys. Lett. 94, 152504 (2009) CrossRefADSGoogle Scholar
  10. 10.
    S. Wang, Appl. Phys. Lett. 28, 303 (1976) CrossRefADSGoogle Scholar
  11. 11.
    V. Daneu, D. Sokoloff, A. Sanchez, A. Javan, Appl. Phys. Lett. 15, 398 (1969) CrossRefADSGoogle Scholar
  12. 12.
    A. Sanchez, C.F. Davis, Jr., K.C. Liu, A. Javan, J. Appl. Phys. 49, 5270 (1978) CrossRefADSGoogle Scholar
  13. 13.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, J. Appl. Phys. 94, 4632 (2003) CrossRefADSGoogle Scholar
  14. 14.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, C.F. Quate, J. Appl. Phys. 4, 957 (2004) Google Scholar
  15. 15.
    P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005) CrossRefADSGoogle Scholar
  16. 16.
    F. Jackel, A.A. Kinkhabwala, W.E. Moerner, Chem. Phys. Lett. 446, 339 (2007) CrossRefADSGoogle Scholar
  17. 17.
    R.D. Grober, R.J. Schoelkopf, D.E. Prober, Appl. Phys. Lett. 70, 1354 (1997) CrossRefADSGoogle Scholar
  18. 18.
    K. Sendur, W. Challener, J. Microsc. 210, 279 (2003) CrossRefMathSciNetGoogle Scholar
  19. 19.
    E.X. Jin, X. Xu, J. Comput. Theor. Nanosci. 5, 214 (2008) Google Scholar
  20. 20.
    L. Novotny, Phys. Rev. Lett. 98, 266802 (2007) CrossRefADSGoogle Scholar
  21. 21.
    A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003) CrossRefADSGoogle Scholar
  22. 22.
    K. Sendur, W. Challener, C. Peng, J. Appl. Phys. 96, 2743 (2004) CrossRefADSGoogle Scholar
  23. 23.
    L. Wang, X. Xu, J. Microsc. 229, 483 (2008) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    B. Liedberg, C. Nylander, I. Lundstroem, Sens. Actuators 4, 299 (1983) CrossRefGoogle Scholar
  25. 25.
    Y. Ohdaira, T. Inoue, H. Hori, K. Kitahara, Opt. Express 16, 2915 (2008) CrossRefADSGoogle Scholar
  26. 26.
    K. Sendur, E. Baran, Appl. Phys. B 96, 325 (2009) CrossRefADSGoogle Scholar
  27. 27.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998) Google Scholar
  28. 28.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006) Google Scholar
  29. 29.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityOrhanlı–Tuzla, IstanbulTurkey

Personalised recommendations