Applied Physics B

, 97:787 | Cite as

A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation

  • S. Klinkhammer
  • T. Woggon
  • U. Geyer
  • C. Vannahme
  • S. Dehm
  • T. Mappes
  • U. Lemmer
Article

Abstract

We report on an organic semiconductor distributed feedback laser with a continuously tunable wavelength from 621 to 657 nm on a single sample with thresholds as low as 38 μJ/cm2. Using laser interference lithography and reactive ion etching, we textured a glass substrate with a one-dimensional second-order Bragg surface grating. Optical confinement and gain is provided by a wedge-shaped layer of the organic semiconductor tris(8-hydroxyquinoline) aluminum doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane, which is fabricated by a rotating shadow mask evaporation. This allows for a simple, broadband continuous tuning of the laser emission wavelength.

PACS

42.70.Jk 42.55.Tv 

References

  1. 1.
    I.D.W. Samuel, G.A. Turnbull, Chem. Rev. 107, 1272 (2007) CrossRefGoogle Scholar
  2. 2.
    N. Tessler, G. Denton, R. Friend, Nature 382, 695 (1996) CrossRefADSGoogle Scholar
  3. 3.
    C. Karnutsch, C. Pflumm, G. Heliotis, J. deMello, D.D.C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, U. Lemmer, Appl. Phys. Lett. 90, 131104 (2007) CrossRefADSGoogle Scholar
  4. 4.
    R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D.D. Santos, J. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121 (1999) CrossRefADSGoogle Scholar
  5. 5.
    Y. Yang, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 92, 163306 (2008) CrossRefADSGoogle Scholar
  6. 6.
    F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, A. Heeger, Science 273, 1833 (1996) CrossRefADSGoogle Scholar
  7. 7.
    V. Kozlov, V. Bulovic, P. Burrows, S. Forrest, Nature 389, 362 (1997) CrossRefADSGoogle Scholar
  8. 8.
    D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Appl. Phys. Lett. 85, 1659 (2004) CrossRefADSGoogle Scholar
  9. 9.
    V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, M. Thompson, J. Appl. Phys. 84, 4096 (1998) CrossRefADSGoogle Scholar
  10. 10.
    C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, T. Weimann, IEEE Photonics Technol. Lett. 19, 741 (2007) CrossRefADSGoogle Scholar
  11. 11.
    M. Punke, T. Woggon, M. Stroisch, B. Ebenhoch, U. Geyer, C. Karnutsch, M. Gerken, U. Lemmer, M. Bründel, J. Wang, T. Weimann, Proc. SPIE 6659, 665909 (2007) CrossRefGoogle Scholar
  12. 12.
    M.B. Christiansen, M. Scholer, A. Kristensen, Opt. Express 15, 3931 (2007) CrossRefADSGoogle Scholar
  13. 13.
    D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Appl. Phys. Lett. 85, 1886 (2004) CrossRefADSGoogle Scholar
  14. 14.
    S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. Mückl, W. Brütting, A. Gombert, V. Wittwer, Opt. Lett. 26, 593 (2001) CrossRefADSGoogle Scholar
  15. 15.
    T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, U. Scherf, Appl. Phys. Lett. 88, 241116 (2006) CrossRefADSGoogle Scholar
  16. 16.
    B. Schuette, H. Gothe, S.I. Hintschich, M. Sudzius, H. Frob, V.G. Lyssenko, K. Leo, Appl. Phys. Lett. 92, 163309 (2008) CrossRefADSGoogle Scholar
  17. 17.
    N. Tsutsumi, A. Fujihara, D. Hayashi, Appl. Opt. 45, 5748 (2006) CrossRefADSGoogle Scholar
  18. 18.
    D. Schneider, S. Hartmann, T. Bernstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Appl. Phys. B 77, 399 (2003) CrossRefADSGoogle Scholar
  19. 19.
    U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, M. Gerken, J. Appl. Phys. 104, 093111 (2008) CrossRefADSGoogle Scholar
  20. 20.
    G. Duplain, P. Verly, J. Dobrowolski, A. Waldorf, S. Bussiere, Appl. Opt. 32, 1145 (1993) CrossRefADSGoogle Scholar
  21. 21.
    A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Klinkhammer
    • 1
    • 2
  • T. Woggon
    • 1
  • U. Geyer
    • 1
  • C. Vannahme
    • 1
    • 2
  • S. Dehm
    • 3
  • T. Mappes
    • 2
  • U. Lemmer
    • 1
  1. 1.Light Technology Institute and Center for Functional Nanostructures (CFN)Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Microstructure TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations