Applied Physics B

, Volume 98, Issue 2–3, pp 581–591 | Cite as

CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows

Article

Abstract

A laser-induced fluorescence diagnostic is presented for high-speed measurements in gaseous flows. The technique employs a toluene tracer excited at 266 nm by a cavity-doubled 532 nm diode-pumped 5.5 W CW laser. The high power (600 mW) of UV light produced by cavity doubling, together with the high fluorescence yield of toluene, yields strong signal levels needed for high-speed recording. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet. For single-point measurements with a photomultiplier tube, the detection limit for fluctuations in the toluene mole fraction was 0.028%, achieved with 430 mW of laser power and 8.5 kHz bandwidth for a 1×0.4×0.4 mm collection volume. Line (1-D) imaging with a kinetic-readout camera (512 pixels/row) achieved a detection limit of 0.23% with 440 mW of laser power, 9.7 kHz frame rate, and 0.3×0.2×0.4 mm collection volume per pixel, while planar (2-D) imaging with a 512×512 pixel intensified camera achieved a detection limit of 0.88% with 205 mW of laser power, 100 μs exposure time, and 0.4×0.4×0.4 mm volume per pixel. Line and planar imaging were applied to a turbulent jet with Re of about 10000.

PACS

42.62.Fi 33.50.- j 42.30.Va 47.80.Jk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005) CrossRefGoogle Scholar
  2. 2.
    C.F. Kaminski, J. Hult, M. Alden, Appl. Phys. B 68, 757 (1999) CrossRefADSGoogle Scholar
  3. 3.
    J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005) CrossRefADSGoogle Scholar
  4. 4.
    N. Jiang, W.R. Lempert, Opt. Lett. 33, 2236 (2008) CrossRefADSGoogle Scholar
  5. 5.
    B. Hiller, R.K. Hanson, Appl. Opt. 27, 33 (1988) CrossRefADSGoogle Scholar
  6. 6.
    M.D. DiRosa, A.Y. Chang, R.K. Hanson, Appl. Opt. 32, 4074 (1993) ADSGoogle Scholar
  7. 7.
    A.Y. Chang, B.E. Battles, R.K. Hanson, Opt. Lett. 15, 706 (1990) CrossRefADSGoogle Scholar
  8. 8.
    C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968) CrossRefADSGoogle Scholar
  9. 9.
    J.D. Koch, R.K. Hanson, W. Koban, C. Schulz, Appl. Opt. 43, 5901 (2004) CrossRefADSGoogle Scholar
  10. 10.
    G.B. Porter, J. Chem. Phys. 32, 1587 (1960) CrossRefADSGoogle Scholar
  11. 11.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005) CrossRefADSGoogle Scholar
  12. 12.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004) CrossRefGoogle Scholar
  13. 13.
    M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008) CrossRefADSGoogle Scholar
  14. 14.
    D.A. Rothamer, J.B. Ghandhi, SAE Technical Paper Series No. 2002-01-0748 (2002) Google Scholar
  15. 15.
    D.R. Dowling, P.E. Dimotakis, J. Fluid Mech. 218, 109 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations